Do you want to publish a course? Click here

Deep, multi-band photometry of low-mass stars to reveal young clusters: a blind study of the NGC 2264 region

56   0   0.0 ( 0 )
 Added by Laura Venuti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to test a purely photometric approach to statistically identify a young clustered population embedded in a large population of field stars, with no prior knowledge on the nature of stars in the field. We conducted our blind test study on the NGC 2264 region, which hosts a well-known young cluster. We selected a large (4 sq. deg.) area around the NGC 2264 cluster, and assembled an extensive r,i,J catalog of the field from pre-existing large-scale surveys. We then mapped the stellar color locus on the (i-J, r-i) diagram to select M-type stars, which: i) comprise a significant fraction of the Galactic stellar population; ii) exhibit the strongest luminosity evolution from the PMS to the MS; iii) have r,i,J color properties that provide a direct and empirical estimate of A_V. A comparative analysis of the photometric and spatial properties of M-type stars as a function of A_V enabled us to probe the structure and stellar content of our field. We could identify two distinct populations: a diffuse field population and a clustered population. The presence of occulting material, spatially associated with the clustered population, allowed us to derive an estimate of its distance (800-900 pc) and age (~0.5-5 Myr), consistent with the literature parameters for the NGC 2264 star-forming region. The extracted clustered population exhibits a hierarchical structure, in excellent agreement with the NGC 2264 subregions reported in the literature. Our selection of clustered members is coherent with the literature census of the NGC 2264 cluster for about 95% of the objects in the inner regions of the field, where the contamination rate by field stars in our sample is only 2%. The method tested here can be readily applied to surveys like Pan-STARRS and the future LSST to undertake a first complete census of low-mass, young star populations down to distances of several kpc across the Galactic plane.



rate research

Read More

Space photometric time series of the most massive members of the young open cluster NGC 2264 allow us to study their different sources of variability down to the millimagnitude level and permits a search for Slowly Pulsating B (SPB) type pulsation among objects that are only a few million years old. Our goal is to conduct a homogeneous study of young B type stars in the cluster NGC 2264 using photometric time series from space in combination with high-resolution spectroscopy and spectropolarimetry obtained from the ground. The latter will be presented in a separate follow-up article. We performed frequency analyses for eleven B stars in the field of the young cluster NGC 2264 using photometric time series from the MOST, CoRoT and Spitzer space telescopes and the routines Period04 and SigSpec. We employ the MESA stellar evolution code in combination with the oscillation code GYRE to identify the pulsation modes for two SPB stars which exhibit short period spacing series. From our analysis we identify four objects that show SPB pulsations, five stars that show rotational modulation of their light curves caused by spots, one star that is identified to be a binary, and one object in the field of the cluster that is found to be a non-member Be star. In two SPB stars we detect a number of regularly spaced pulsation modes that are compatible with being members of a g mode period series. Despite NGC 2264s young age, our analysis illustrates that its B type members have already arrived on the zero-age main sequence (ZAMS). Our asteroseismic analysis yields masses between 4 and 6 Msun and ages between 1 and 6 million years, which agree well to the overall cluster age.
We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). We performed a deep u,g,r,i mapping and a simultaneous u+r monitoring of the region with CFHT/MegaCam in order to directly probe the accretion process from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range 0.1-2 Mo. About 40% are classical (accreting) T Tauri stars, based on various diagnostics (H_alpha, UV and IR excesses). The remaining non-accreting members define the (photospheric+chromospheric) reference UV emission level over which flux excess is detected and measured. We revise the membership status of cluster members based on UV accretion signatures and report a new population of 50 CTTS candidates. A large range of UV excess is measured for the CTTS population, varying from a few 0.1 to 3 mag. We convert these values to accretion luminosities and obtain mass accretion rates ranging from 1e-10 to 1e-7 Mo/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6sigma correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for upper limits, yields M_acc $propto$ M^{1.4+/-0.3}. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, much smaller than the observed spread. We suggest that a non-negligible age spread across the cluster may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different M_acc regimes.
We provide CoRoT and Spitzer light curves, as well as broad-band multi-wavelength photometry and high resolution, multi- and single-epoch spectroscopy for 17 classical T Tauris in NGC 2264 whose CoRoT light curves (LCs) exemplify the stochastic LC class as defined in Cody et al. (2014). The most probable physical mechanism to explain the optical variability in this LC class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. As evidence in favor of this hypothesis, multi-epoch high resolution spectra for a subset of these stars shows that their veiling levels also vary in time and that this veiling variability is consistent in both amplitude and timescale with the optical LC morphology. Furthermore, the veiling variability is well-correlated with the strength of the HeI 6678A emission line, a feature predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst LC morphology (Stauffer et al. 2014) are also attributed to variable mass accretion. Both the stochastic and accretion burst LCs can be explained by a simple model of randomly occurring flux bursts, with the stochastic LC class having a higher frequency of lower amplitude events. Based on their UV excesses, veiling, and mean Ha equivalent widths, members of the stochastic LC class have only moderate time-averaged mass accretion rates. The most common feature of their Ha profiles is for them to exhibit blue-shifted absorption features, most likely originating in a disk wind. The lack of periodic signatures in the LCs suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
144 - B. A. Twarog 2020
Open clusters (OC) of 1-3 Gyr age contain intermediate-to-low-mass stars in evolutionary phases of multiple relevance to understanding Li evolution. Stars leaving the main sequence (MS) from the hot side of the Lithium dip (LD) at a fixed age can include a range of mass, varying degrees of core degeneracy, and helium ignition under quiescent or flash conditions. An ongoing survey of a significant sample of stars from the giant branch to below the LD in key open clusters has revealed patterns that supply critical clues to the underlying source of Li variation among stars of differing mass and age. While the LD is well established in OC of this age, stars on the hot side of the LD can exhibit Li ranging from the apparent primordial cluster value to upper limits similar to those found at the LD center, despite occupying the same region of the color-magnitude diagram (CMD). Stars on the first-ascent giant branch show a dramatic decline in measurable Li that correlates strongly with increasing age and reduced turnoff mass. We discuss how these trends can be explained in the context of the existence of the LD itself and the temporal evolution of individual stars.
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star forming region S MON are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 -- -0.5, and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا