Do you want to publish a course? Click here

Weighted Upper Edge Cover: Complexity and Approximability

64   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Optimization problems consist of either maximizing or minimizing an objective function. Instead of looking for a maximum solution (resp. minimum solution), one can find a minimum maximal solution (resp. maximum minimal solution). Such flipping of the objective function was done for many classical optimization problems. For example, Minimum Vertex Cover becomes Maximum Minimal Vertex Cover, Maximum Independent Set becomes Minimum Maximal Independent Set and so on. In this paper, we propose to study the weighted version of Maximum Minimal Edge Cover called Upper Edge Cover, a problem having application in the genomic sequence alignment. It is well-known that Minimum Edge Cover is polynomial-time solvable and the flipped version is NP-hard, but constant approximable. We show that the weighted Upper Edge Cover is much more difficult than Upper Edge Cover because it is not $O(frac{1}{n^{1/2-varepsilon}})$ approximable, nor $O(frac{1}{Delta^{1-varepsilon}})$ in edge-weighted graphs of size $n$ and maximum degree $Delta$ respectively. Indeed, we give some hardness of approximation results for some special restricted graph classes such as bipartite graphs, split graphs and $k$-trees. We counter-balance these negative results by giving some positive approximation results in specific graph classes.



rate research

Read More

Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being $s$-club, which is a subgraph where each vertex is at distance at most $s$ to the others. Here we consider the problem of covering a given graph with the minimum number of $s$-clubs. We study the computational and approximation complexity of this problem, when $s$ is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three $2$-clubs is NP-complete, and that deciding if there exists a cover of a graph with two $3$-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of $2$-clubs and $3$-clubs. We show that, given a graph $G=(V,E)$ to be covered, covering $G$ with the minimum number of $2$-clubs is not approximable within factor $O(|V|^{1/2 -varepsilon})$, for any $varepsilon>0$, and covering $G$ with the minimum number of $3$-clubs is not approximable within factor $O(|V|^{1 -varepsilon})$, for any $varepsilon>0$. On the positive side, we give an approximation algorithm of factor $2|V|^{1/2}log^{3/2} |V|$ for covering a graph with the minimum number of $2$-clubs.
We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover ($mathrm{DSSC}$), a natural and intriguing generalization of the classical List Update problem. In $mathrm{DSSC}$, we maintain a sequence of permutations $(pi^0, pi^1, ldots, pi^T)$ on $n$ elements, based on a sequence of requests $(R^1, ldots, R^T)$. We aim to minimize the total cost of updating $pi^{t-1}$ to $pi^{t}$, quantified by the Kendall tau distance $mathrm{D}_{mathrm{KT}}(pi^{t-1}, pi^t)$, plus the total cost of covering each request $R^t$ with the current permutation $pi^t$, quantified by the position of the first element of $R^t$ in $pi^t$. Using a reduction from Set Cover, we show that $mathrm{DSSC}$ does not admit an $O(1)$-approximation, unless $mathrm{P} = mathrm{NP}$, and that any $o(log n)$ (resp. $o(r)$) approximation to $mathrm{DSSC}$ implies a sublogarithmic (resp. $o(r)$) approximation to Set Cover (resp. where each element appears at most $r$ times). Our main technical contribution is to show that $mathrm{DSSC}$ can be approximated in polynomial-time within a factor of $O(log^2 n)$ in general instances, by randomized rounding, and within a factor of $O(r^2)$, if all requests have cardinality at most $r$, by deterministic rounding.
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The objective is to determine whether there exists a directed odd cycle transversal of $D$ of size at most $k$. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size $k$ by showing that DOCT does not admit an algorithm with running time $f(k)n^{O(1)}$ unless FPT = W[1]. On the positive side, we give a factor $2$ fixed parameter tractable (FPT) approximation algorithm for the problem. More precisely, our algorithm takes as input $D$ and $k$, runs in time $2^{O(k^2)}n^{O(1)}$, and either concludes that $D$ does not have a directed odd cycle transversal of size at most $k$, or produces a solution of size at most $2k$. Finally, we provide evidence that there exists $epsilon > 0$ such that DOCT does not admit a factor $(1+epsilon)$ FPT-approximation algorithm.
We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not admit a polynomial kernel unless $NP subseteq coNP/poly$, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. We obtain an $O(2^{O(pk)}n^{O(1)})$-time algorithm for the $p$-Edge-Connected VC and an $O(2^{O(k^2)}n^{O(1)})$-time algorithm for the $p$-Vertex-Connected VC. Finally, we describe a $2(p+1)$-approximation algorithm for the $p$-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning $p$-vertex/edge-connected subgraph of a $p$-vertex/edge-connected graph obtained independently by Nishizeki and Poljak (1994) and Nagamochi and Ibaraki (1992).
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal competitive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا