Do you want to publish a course? Click here

Angular power spectrum analysis on current and future high-energy neutrino data

84   0   0.0 ( 0 )
 Added by Ariane Dekker
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Astrophysical neutrino events have been measured in the last couple of years, which show an isotropic distribution, and the current discussion is their astrophysical origin. We use both isotropic and anisotropic components of the diffuse neutrino data to constrain the contribution of a broad number of extra-galactic source populations to the observed neutrino sky. We simulate up-going muon neutrino events by applying statistical distributions for the flux of extragalactic sources, and by Monte Carlo method we exploit the simulation for current and future IceCube, IceCube-Gen2 and KM3NeT exposures. We aim at constraining source populations by studying their angular patterns, for which we assess the angular power spectrum. We leave the characteristic number of sources ($N_{star}$) as a free parameter, which is roughly the number of neutrino sources over which the measured intensity is divided. With existing two-year IceCube data, we can already constrain very rare, bright sources with $N_{star}lesssim$100. This can be improved to $N_{star}lesssim 10^4$-$10^5$ with IceCube-Gen2 and KM3NeT with ten-year exposure, constraining the contribution of BL Lacs ($N_{star}=6times10^{2}$). On the other hand, we can constrain weak sources with large number densities, like starburst galaxies ($N_{star} = 10^{7}$), if we measure an anisotropic neutrino sky with future observations.



rate research

Read More

The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard astrophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
The study of neutrinos is fundamental to connect astrophysics and elementary particle physics. In this last decade solar neutrino experiments and KamLAND confirmed the LMA solution and further clarified the mass and oscillation pattern. Borexino attacked also the study of the low energy neutrino spectrum. However, important points still need clarification, like the apparent anomaly in the vacuum to matter transition region. Besides, a more detailed study of the low energy components of the pp cycle, combined with a measurement of CNO fluxes, is compulsory, also to discriminate between the low and the high
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($sim 90 %$) by electron and tau flavors. The flux, observed in the sensitive energy range from $16,mathrm{TeV}$ to $2.6,mathrm{PeV}$, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $gamma=2.53pm0.07$ and a flux normalization for each neutrino flavor of $phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100, mathrm{TeV}$, in agreement with IceCubes complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices $gammaleq2.28$ at $ge3sigma$ significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below $sim100,{rm{TeV}}$ compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $ge 0.06$). The sizable and smooth flux measured below $sim 100,{rm{TeV}}$ remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.
The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above 2 GeV. Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extragalactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background. Data are available at https://www-glast.stanford.edu/pub_data/552.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا