Do you want to publish a course? Click here

$ u$-Inflaton Dark Matter

63   0   0.0 ( 0 )
 Added by Joao G. Rosa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a unified model where the same scalar field can drive inflation and account for the present dark matter abundance. This scenario is based on the incomplete decay of the inflaton field into right-handed neutrino pairs, which is accomplished by imposing a discrete interchange symmetry on the inflaton and on two of the right-handed neutrinos. We show that this can lead to a successful reheating of the Universe after inflation, while leaving a stable inflaton remnant at late times. This remnant may be in the form of WIMP-like inflaton particles or of an oscillating inflaton condensate, depending on whether or not the latter evaporates and reaches thermal equilibrium with the cosmic plasma. We further show that this scenario is compatible with generating light neutrino masses and mixings through the seesaw mechanism, predicting at least one massless neutrino, and also the observed baryon asymmetry via thermal leptogenesis.



rate research

Read More

If cosmic inflation was driven by an electrically neutral scalar field stable on cosmological time scales, the field necessarily constitutes all or part of dark matter (DM). We study this possibility in a scenario where the inflaton field $s$ resides in a hidden sector, which is coupled to the Standard Model sector through the Higgs portal $lambda_{hs} s^2mathcal{H}^daggermathcal{H}$ and non-minimally to gravity via $xi_s s^2 R$. We study scenarios where the field $s$ first drives inflation, then reheats the Universe, and later constitutes all DM. We consider two benchmark scenarios where the DM abundance is generated either by production during reheating or via non-thermal freeze-in. In both cases, we take into account all production channels relevant for DM in the mass range from keV to PeV scale. On the inflationary side, we compare the dynamics and the relevant observables in two different but well-motivated theories of gravity (metric and Palatini), discuss multifield effects in case both fields ($s$ and $h$) were dynamical during inflation, and take into account the non-perturbative nature of particle production during reheating. We find that, depending on the initial conditions for inflation, couplings and the DM mass, the scenario works well especially for large DM masses, $10^2$ GeV$lesssim m_{s}lesssim 10^6$ GeV, although there are also small observationally allowed windows at the keV and MeV scales. We discuss how the model can be tested through astrophysical observations.
We present a scenario of vector dark matter production during inflation containing a complex inflaton field which is charged under a dark gauge field and which has a symmetry breaking potential. As the inflaton field rolls towards the global minimum of the potential the dark photons become massive with a mass which can be larger than the Hubble scale during inflation. The accumulated energy of the quantum fluctuations of the produced dark photons gives the observed relic density of the dark matter for a wide range of parameters. Depending on the parameters, either the transverse modes or the longitudinal mode or their combination can generate the observed dark matter relic energy density.
We show that inflation can naturally occur at a finite temperature T>H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similarly to Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.
We propose a scenario where both inflation and dark matter are described by a single axion-like particle (ALP) in a unified manner. In a class of the minimal axion hilltop inflation, the effective masses at the maximum and mimimum of the potential have equal magnitude but opposite sign, so that the ALP inflaton is light both during inflation and in the true vacuum. After inflation, most of the ALPs decay and evaporate into plasma through a coupling to photons, and the remaining ones become dark matter. We find that the observed CMB and matter power spectrum as well as the dark matter abundance point to an ALP of mass $m_phi = {cal O}(0.01)$ eV and the axion-photon coupling $g_{phi gamma gamma} ={cal O}(10^{-11})$GeV$^{-1}$: the ALP miracle. The suggested parameter region is within the reach of the next generation axion helioscope, IAXO. Furthermore, thermalized ALPs contribute to hot dark matter and its abundance is given in terms of the effective number of extra neutrino species, $Delta N_{rm eff} simeq 0.03$, which can be tested by the future CMB experiments. We also discuss a case with multiple ALPs, where the coupling to photons can be enhanced in the early Universe by an order of magnitude or more, which enlarges the parameter space for the ALP miracle. The heavy ALP plays a role of the waterfall field in hybrid inflation, and reheats the Universe, and it can be searched for in various experiments such as SHiP.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا