Genuine 12-qubit entanglement on a superconducting quantum processor


Abstract in English

We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1D chain with relaxation times ranging from 29.6 to 54.6 $mu$s. The fidelity of the 12-qubit entanglement was measured to be above $0.5544pm0.0025$, exceeding the genuine multipartite entanglement threshold by 21 statistical standard deviations. Our entangling circuit to generate linear cluster states is depth-invariant in the number of qubits and uses single- and double-qubit gates instead of collective interactions. Our results are a substantial step towards large-scale random circuit sampling and scalable measurement-based quantum computing.

Download