No Arabic abstract
The isospin character of p-n pairs at large relative momentum has been observed for the first time in the 16O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in neutron pick up domain of 16O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in ground state of 16O.
The transfer of neutrons onto 24Ne has been measured using a reaccelerated radioactive beam of 24Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2+ level in 25Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this states identity. The raised 3/2+ level is observed simultaneously with the intruder negative parity 7/2- and 3/2- levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2+ state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.
The cross section of the pd -> 3He pi+ pi - reaction has been measured at the MOMO facility in a kinematically complete experiment at a c. m. excess energy of Q = 70 MeV. The energy and angular distributions show that the reaction is dominated by p-wave pi+ pi- pairs. This is in complete contrast to the results of inclusive measurements at somewhat higher energies which show a strong s-wave ABC enhancement at low pi pi masses. There are however indications of p-wave pion pairs from other experiments at low Q.
The most recent high-precision data on spin observables $Sigma$, $T$, $P$, $E$, $F$ and $H$ reported by the CLAS Collaboration together with the previous data on differential cross sections and spin-density-matrix elements reported by the CLAS, A2, GRAAL, SAPHIR and CBELSA/TAPS Collaborations for the reaction $gamma p to omega p$ are analyzed within an effective Lagrangian approach. The reaction amplitude is constructed by considering the $t$-channel $pi$ and $eta$ exchanges, the $s$-channel nucleon and nucleon resonances exchanges, the $u$-channel nucleon exchange and the generalized contact current. The latter accounts effectively for the interaction current and ensures that the full photoproduction amplitude is gauge invariant. It is shown that all the available CLAS data can be satisfactorily described by considering the $N(1520)3/2^-$, $N(1700)3/2^-$, $N(1720)3/2^+$, $N(1860)5/2^+$, $N(1875)3/2^-$, $N(1895)1/2^-$ and $N(2060)5/2^-$ resonances in the $s$-channel. The parameters of these resonances are extracted and compared with those quoted by PDG.
We have measured the 3He(e,epp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, $p_{tot}$. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low $p_{tot}$ and rises to approximately 0.5 at large $p_{tot}$. This shows the dominance of tensor over central correlations at this relative momentum.
We present calculations of the invariant mass spectra of the $Lambda$p system for the exclusive $p p to K^+ Lambda p$ reaction with the aim of studying the final state interaction between the $Lambda$-hyperon and the proton. The reaction is described within a meson exchange framework and the final state $Lambda p$ interaction is incorporated through an off-shell t-matrix for the $Lambda p to Lambda p$ scattering, constructed using the available hyperon-nucleon (YN) potentials. The cross sections are found to be sensitive to the type of YN potential used especially at the $Lambda$ and $Sigma$ production thresholds. Hence, data on this exclusive reaction, which can be used to constrain the YN potentials are desirable.