Do you want to publish a course? Click here

Towards trigonometric deformation of $widehat{mathfrak{sl}}_2$ coset VOA

101   0   0.0 ( 0 )
 Added by Evgeny Mukhin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the quantization of the $widehat{mathfrak{sl}}_2$ coset vertex operator algebra $mathcal{W}D(2,1;alpha)$ using the bosonization technique. We show that after quantization there exist three families of commuting integrals of motion coming from three copies of the quantum toroidal algebra associated to ${mathfrak{gl}}_2$.



rate research

Read More

85 - E. Feigin 2006
In this paper we study an approximation of tensor product of irreducible integrable $hat{mathfrak{sl}_2}$ representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent characters of spaces of these theories as limits of certain restricted Kostka polynomials. This leads to the bosonic (which is known) and fermionic (which is new) formulas for the $hat{mathfrak{sl}_2}$ branching functions.
Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ supersymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$
The higher rank Racah algebra $R(n)$ introduced recently is recalled. A quotient of this algebra by central elements, which we call the special Racah algebra $sR(n)$, is then introduced. Using results from classical invariant theory, this $sR(n)$ algebra is shown to be isomorphic to the centralizer $Z_{n}(mathfrak{sl}_2)$ of the diagonal embedding of $U(mathfrak{sl}_2)$ in $U(mathfrak{sl}_2)^{otimes n}$. This leads to a first and novel presentation of the centralizer $Z_{n}(mathfrak{sl}_2)$ in terms of generators and defining relations. An explicit formula of its Hilbert-Poincare series is also obtained and studied. The extension of the results to the study of the special Askey-Wilson algebra and its higher rank generalizations is discussed.
We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.
204 - Robert McRae 2021
We prove a general mirror duality theorem for a subalgebra $U$ of a simple vertex operator algebra $A$ and its coset $V=mathrm{Com}_A(U)$, under the assumption that $A$ is a semisimple $Uotimes V$-module. More specifically, we assume that $Acongbigoplus_{iin I} U_iotimes V_i$ as a $Uotimes V$-module, where the $U$-modules $U_i$ are simple and distinct and are objects of a semisimple braided ribbon category of $U$-modules, and the $V$-modules $V_i$ are semisimple and contained in a (not necessarily rigid) braided tensor category of $V$-modules. We also assume that $U$ and $V$ form a dual pair in $A$, so that $U$ is the coset $mathrm{Com}_A(V)$. Under these conditions, we show that there is a braid-reversing tensor equivalence $tau: mathcal{U}_Arightarrowmathcal{V}_A$, where $mathcal{U}_A$ is the semisimple category of $U$-modules with simple objects $U_i$, $iin I$, and $mathcal{V}_A$ is the category of $V$-modules whose objects are finite direct sums of the $V_i$. In particular, the $V$-modules $V_i$ are simple and distinct, and $mathcal{V}_A$ is a rigid tensor category.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا