Do you want to publish a course? Click here

Expansion and Age of the X-ray Synchrotron-Dominated Supernova Remnant G330.2+1.0

214   0   0.0 ( 0 )
 Added by Kazimierz Borkowski
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new Chandra observations of one of the few Galactic supernova remnants whose X-ray spectrum is dominated by nonthermal synchrotron radiation, G330.2+1.0. We find that between 2006 and 2017, some parts of the shell have expanded by about 1%, giving a free-expansion (undecelerated) age of about 1000 yr, and implying shock velocities there of 9000 km/s for a distance of 5 kpc. Somewhat slower expansion is seen elsewhere around the remnant periphery, in particular in compact knots. Because some deceleration must have taken place, we infer that G330.2+1.0 is less than about 1000 yr old. Thus, G330.2+1.0 is one of only four Galactic core-collapse remnants of the last millennium. The large size, low brightness, and young age require a very low ambient density, suggesting expansion in a stellar-wind bubble. We suggest that in the east, where some thermal emission is seen and expansion velocities are much slower, the shock has reached the edge of the cavity. The high shock velocities can easily accelerate relativistic electrons to X-ray-emitting energies. A few small regions show highly significant brightness changes by 10% to 20%, both brightening and fading, a phenomenon previously observed in only two supernova remnants, indicating strong and/or turbulent magnetic fields.



rate research

Read More

The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E $>$ 0.1 TeV) {gamma}-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE {gamma}-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov telescope array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analyzed in the context of the multi-wavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant {gamma}-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99% confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index {Gamma} = 2.5 were set at 5.6 $times$ 10$^{-13}$ cm$^{-2}$ s$^{-1}$ above 0.26 TeV and 3.2 $times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B$_{mathrm{G1.9}}$ $gtrsim$ 11 {mu}G for G1.9+0.3 and to B$_{mathrm{G330}}$ $gtrsim$ 8 {mu}G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.
Supernova remnants (SNRs) are widely considered to be accelerators of cosmic rays (CR). They are also expected to produce very-high-energy (VHE; $E > 100$ GeV) gamma rays through interactions of high-energy particles with the surrounding medium and photon fields. They are, therefore, promising targets for observations with ground-based imaging atmospheric Cherenkov telescopes like the H.E.S.S. telescope array. VHE gamma-ray emission has already been discovered from a number of SNRs, establishing them as a prominent source class in the VHE domain. Of particular interest are the handful of SNRs whose X-ray spectra are dominated by non-thermal synchrotron emission, such as the VHE gamma-ray emitters RX J0852.0-4622 (Vela Jr.) and RX J1713-3946. The shell-type SNRs G1.9+0.3 and G330.2+1.0 also belong to this subclass and are further notable for their young ages ($leq 1$ kyr), especially G1.9+0.3, which was recently determined to be the youngest SNR in the Galaxy ($sim100$ yr). These unique characteristics motivated investigations with H.E.S.S. to search for VHE gamma rays. The results of the H.E.S.S. observations and analyses are presented, along with implications for potential particle acceleration scenarios.
We report the first detection of thermal X-ray line emission from the supernova remnant (SNR) RX J1713.7-3946, the prototype of the small class of synchrotron dominated SNRs. A softness-ratio map generated using XMM-Newton data shows that faint interior regions are softer than bright shell regions. Using Suzaku and deep XMM-Newton observations, we have extracted X-ray spectra from the softest area, finding clear line features at 1 keV and 1.35 keV. These lines can be best explained as Ne Ly-alpha and Mg He-alpha from a thermal emission component. Since the abundance ratios of metals to Fe are much higher than solar values in the thermal component, we attribute the thermal emission to reverse-shocked SN ejecta. The measured Mg/Ne, Si/Ne, and Fe/Ne ratios of 2.0-2.6, 1.5-2.0, and <0.05 solar suggest that the progenitor star of RX J1713.7-3946 was a relatively low-mass star (<~20 M_sun), consistent with a previous inference based on the effect of stellar winds of the progenitor star on the surrounding medium. Since the mean blastwave speed of ~6000 km/s (the radius of 9.6 pc divided by the age of 1600 yr) is relatively fast compared with other core-collapse SNRs, we propose that RX J1713.7-3946 is a result of a Type Ib/c supernova whose progenitor was a member of an interacting binary. While our analysis provides strong evidence for X-ray line emission, our interpretation of its nature as thermal emission from SN ejecta requires further confirmation especially through future precision spectroscopic measurements using ASTRO-H.
141 - Sangwook Park 2008
We present results from our X-ray data analysis of the SNR G330.2+1.0 and its CCO, CXOU J160103.1--513353 (J1601). Using our XMM-Newton and Chandra observations, we find that the X-ray spectrum of J1601 can be described by neutron star atmosphere models (T ~ 2.5--3.7 MK). Assuming the distance of d ~ 5 kpc for J1601 as estimated for SNR G330.2+1.0, a small emission region of R ~ 1--2 km is implied. X-ray pulsations previously suggested by Chandra are not confirmed by the XMM-Newton data, and are likely not real. However, our timing analysis of the XMM-Newton data is limited by poor photon statistics, and thus pulsations with a relatively low amplitude (i.e., an intrinsic pulsed-fraction < 40%) cannot be ruled out. Our results indicate that J1601 is a CCO similar to that in the Cassiopeia A SNR.X-ray emission from SNR G330.2+1.0 is dominated by power law continuum (Gamma ~ 2.1--2.5) which primarily originates from thin filaments along the boundary shell. This X-ray spectrum implies synchrotron radiation from shock-accelerated electrons with an exponential roll-off frequency ~ 2--3 x 10^17 Hz. For the measured widths of the X-ray filaments (D ~ 0.3 pc) and the estimated shock velocity (v_s ~ a few x 10^3 km s^-1), a downstream magnetic field B ~ 10--50 $mu$G is derived. The estimated maximum electron energy E_max ~ 27--38 TeV suggests that G330.2+1.0 is a candidate TeV gamma-ray source. We detect faint thermal X-ray emission in G330.2+1.0. We estimate a low preshock density n_0 ~ 0.1 cm^-3, which suggests a dominant contribution from an inverse Compton mechanism (than the proton-proton collision) to the prospective gamma-ray emission. Follow-up deep radio, X-ray, and gamma-ray observations will be essential to reveal the details of the shock parameters and the nature of particle accelerations in this SNR.
The synchrotron X-ray stripes discovered in Tychos supernova remnant (SNR) have been attracting attention since they may be evidence for proton acceleration up to PeV. We analyzed Chandra data taken in 2003, 2007, 2009, and 2015 for imaging and spectroscopy of the stripes in the southwestern region of the SNR. Comparing images obtained at different epochs, we find that time variability of synchrotron X-rays is not limited to two structures previously reported but is more common in the region. Spectral analysis of nine bright stripes reveals not only their time variabilities but also a strong anti-correlation between the surface brightness and photon indices. The spectra of the nine stripes have photon indices of Gamma = 2.1--2.6 and are significantly harder than those of the outer rim of the SNR in the same region with Gamma = 2.7--2.9. Based on these findings, we indicate that the magnetic field is substantially amplified, and suggest that particle acceleration through a stochastic process may be at work in the stripes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا