No Arabic abstract
Carbon-enhanced metal-poor (CEMP) stars comprise a large percentage of stars at the lowest metallicities. The stars in the CEMP-no subcategory do not show any s-process enhancement and therefore cannot easily be explained by transfer of carbon and s-process elements from a binary AGB companion. We have performed radial velocity monitoring of a sample of 22 CEMP-no stars to further study the role binarity plays in this type of CEMP star. We find four new binary CEMP-no stars based on their radial velocity variations, thereby significantly enlarging the population of known binaries to a total of eleven. One of the new binary systems is HE 0107-5240, one of the most iron-poor stars known, supporting the binary transfer model for the origin of the abundance pattern of this star. In our sample we find a difference in binary fraction depending on the absolute carbon abundance, with a binary fraction of $47^{,+15,}_{,-14} %$ for stars with higher absolute carbon abundance and $18^{,+14,}_{,,-9} %$ for stars with lower absolute carbon abundance. This potentially implies a relation between a high carbon abundance and the binarity of a metal-poor star. Although binarity does not equate to mass transfer, there is a possibility that a CEMP-no star in a binary system has been polluted and care has to be taken in the interpretation of their abundance patterns. We furthermore demonstrate the potential of Gaia to discover additional binary candidates.
CEMP-$r/s$ stars are metal-poor stars with enhanced abundances of carbon and heavy elements associated with the slow ($s$-) and rapid ($r$-) neutron-capture process. It is believed that carbon and $s$-elements were accreted from the wind of an AGB primary star, a scenario that is generally accepted to explain the formation of CEMP stars that are only enhanced in $s$-elements (CEMP-$s$ stars). The origin of $r$-element-enrichment in CEMP-$r/s$ stars is debated and many formation scenarios have been put forward. We aim to determine the likelihood of the scenarios proposed to explain the formation of CEMP-$r/s$ stars. We calculate the frequency of CEMP-$r/s$ stars among CEMP-$s$ stars for a variety of scenarios, and we compare it with that determined from an observed sample of CEMP-$r/s$ stars collected from the literature. The theoretical frequency of CEMP-$r/s$ stars predicted in most scenarios underestimates the observed ratio by at least a factor of 5. If the enrichments in $s$- and $r$-elements are independent, the model ratio of CEMP-$r/s$ to CEMP-$s$ stars is about 22%, that is approximately consistent with the lowest estimate of the observed ratio. However, this model predicts that about one third of all carbon-normal stars have [Ba/Fe] and [Eu/Fe] higher than 1, and that 40% of all CEMP stars have [Ba/Eu]$le0$. Stars with these properties are at least ten times rarer in our observed sample. The $intermediate$ or $i$-process, which is supposedly active in some circumstances during the AGB phase, could provide an explanation of the origin of CEMP-$r/s$ stars, similar to that of CEMP-$s$ stars, in the context of wind mass accretion in binary systems. Further calculations of the nucleosynthesis of the $i$-process and of the detailed evolution of late AGB stars are needed to investigate if this scenario predicts a CEMP-$r/s$ star frequency consistent with the observations.
Deriving the metallicity, [Fe/H], in low-resolution spectra of carbon-enhanced metal-poor (CEMP) stars is a tedious task that, owing to the large number of line blends, often leads to uncertainties on [Fe/H] exceeding 0.25dex. The CEMP stars increase in number with decreasing [Fe/H] and some of these are known to be bona fide second generation halo stars. Hence, knowing their [Fe/H] is important for tracing the formation and chemical evolution of the Galaxy. Here, we aim to improve the [Fe/H] measurements in low-resolution spectra by avoiding issues related to blends. We improve our chemical tagging in such spectra at low metallicities. We developed an empirical way of deriving [Fe/H] in CEMP (and C-normal) stars that relates the equivalent width (EW) of strong lines, which remain detectable in lower-resolution, metal-poor spectra. The best [Fe/H] tracers are found to be Cr I and Ni I, which both show strong transitions in spectral regions that are free of molecular bands (between ~5200-6800A, a region accessible to most surveys). We derive different relations for dwarfs and giants. The relations are valid in the ranges ~-3<[Fe/H]<-0.5 and 10<EW<800mA (Cr) or [Fe/H]>-3.2 and EW>5mA (Ni), depending on the element and line as well as the stellar evolutionary stage. The empirical relations are valid for both CEMP and C-normal stars and have been proven to be accurate tracers in a sample of ~400 stars (mainly giants). The metallicities are accurate to within ~0.2 depending on the sample and resolution, and the empirical relations are robust to within 0.05-0.1dex. Our relations will improve the metallicity determination in future surveys, which will encounter a large number of CEMP stars, and will greatly speed up the process of determining [Fe/H] as the EWs only need to be measured in two or three lines in relatively clean regions compared to dealing with numerous blended Fe lines. Abrigded.
Context. As a building block for amino acids, formamide (NH$_2$CHO) is an important molecule in astrobiology and astrochemistry, but its formation path in the interstellar medium is not understood well. Aims. We aim to find empirical evidence to support the chemical relationships of formamide to HNCO and H$_2$CO. Methods. We examine high angular resolution (~0.2) Atacama Large Millimeter/submillimeter Array (ALMA) maps of six sources in three high-mass star-forming regions and compare the spatial extent, integrated emission peak position, and velocity structure of HNCO and H$_2$CO line emission with that of NH$_2$CHO by using moment maps. Through spectral modeling, we compare the abundances of these three species. Results. In these sources, the emission peak separation and velocity dispersion of formamide emission is most often similar to HNCO emission, while the velocity structure is generally just as similar to H$_2$CO and HNCO (within errors). From the spectral modeling, we see that the abundances between all three of our focus species are correlated, and the relationship between NH$_2$CHO and HNCO reproduces the previously demonstrated abundance relationship. Conclusions. In this first interferometric study, which compares two potential parent species to NH$_2$CHO, we find that all moment maps for HNCO are more similar to NH$_2$CHO than H$_2$CO in one of our six sources (G24 A1). For the other five sources, the relationship between NH$_2$CHO, HNCO, and H$_2$CO is unclear as the different moment maps for each source are not consistently more similar to one species as opposed to the other.
We report on the first high-resolution spectroscopic analysis of HE0020-1741, a bright (V=12.9), ultra metal-poor ([Fe/H] = -4.1), carbon-enhanced ([C/Fe] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([Ba/Fe] = -1.1), and an absolute carbon abundance A(C) = 6.1; based on either criterion, HE0020-1741 is sub-classified as a CEMP-no star. We show that the light-element abundance pattern of HE0020-1741 is consistent with predicted yields from a massive (M = 21.5 Mo), primordial composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10 Mo - 100 Mo), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [Fe/H] < -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields.
The elemental-abundance signatures of the very first stars are imprinted on the atmospheres of CEMP-no stars, as various evidence suggests they are bona-fide second-generation stars. It has recently been recognized that the CEMP-no stars can be sub-divided into at least two groups, based on their distinct morphology in the $A$(C)-[Fe/H] space, indicating the likely existence of multiple pathways for their formation. In this work, we compare the halo CEMP-no group morphology with that of stars found in satellite dwarf galaxies of the Milky Way -- a very similar $A$(C)-[Fe/H] pattern is found, providing clear evidence that halo CEMP-no stars were indeed accreted from their host mini-halos, similar in nature to those that formed in presently observed ultra-faint dwarfs (UFDs) and dwarf spheroidal (dSph) galaxies. We also infer that the previously noted anomalous CEMP-no halo stars (with high $A$(C) and low [Ba/Fe] ratios) that otherwise would be associated with Group I may have the same origin as the Group III CEMP-no halo stars, by analogy with the location of several Group III CEMP-no stars in the UFDs and dSphs and their distinct separation from that of the CEMP-$s$ stars in the $A$(Ba)-$A$(C) space. Interestingly, CEMP-no stars associated with UFDs include both Group II and Group III stars, while the more massive dSphs appear to have only Group II stars. We conclude that understanding the origin of the CEMP-no halo stars requires knowledge of the masses of their parent mini-halos, which is related to the amount of carbon dilution prior to star formation, in addition to the nature of their nucleosynthetic origin.