No Arabic abstract
We present a comprehensive study of strain-induced topological magnon phase transitions in insulating three-dimensional (3D) topological chiral antiferromagnets on the kagome-lattice. We show that by applying (100) uniaxial strain, 3D insulating antiferromagnetic Weyl magnons (WMs) manifest as an intermediate phase between a strain-induced 3D magnon Chern insulator (MCI) with integer Chern numbers and a 3D trivial magnon insulator with zero Chern number. In addition, we show that strain suppresses the topological thermal Hall conductivity of magnons in these systems. Due to the similarity between 3D insulating and metallic kagome chiral antiferromagnets, we envision that the current results could also manifest in the 3D antiferromagnetic topological Weyl semimetals Mn$_3$Snslash Ge.
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using optical- pump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range is magnetic.
We describe square lattice spin liquids which break time-reversal symmetry, while preserving translational symmetry. The states are distinguished by the manner in which they transform under mirror symmetries. All the states have non-zero scalar spin chirality, which implies the appearance of spontaneous orbital charge currents in the bulk (even in the insulator); but in some cases, orbital currents are non-zero only in a formulation with three orbitals per unit cell. The states are formulated using both the bosonic and fermionic spinon approaches. We describe states with $mathbb{Z}_2$ and U(1) bulk topological order, and the chiral spin liquid with semionic excitations. The chiral spin liquid has no orbital currents in the one-band formulation, but does have orbital currents in the three-band formulation. We discuss application to the cuprate superconductors, after postulating that the broken time-reversal and mirror symmetries persist into confining phases which may also break other symmetries. In particular, the broken symmetries of the chiral spin liquid could persist into the Neel state.
We theoretically show that the Kitaev interaction generates a novel class of spin texture in the excitation spectrum of the antiferromagnetic insulator found in the Kitaev-Heisenberg-$Gamma$ model. In conducting electronic systems, there is a series of vortex type of spin texture along the Fermi surface induced by Rashba and Dresselhaus spin-orbit coupling. Such spin textures are rarely found in magnetic insulators, since there had been no systematic ways to control the kinetics of its quasi-particle called magnon using a magnetic field or spacially asymmetric exchange couplings. Here, we propose a general framework to explore such spin textures in arbitrary insulating antiferromagnets. We introduce an analytical method to transform any complicated Hamiltonian to the simple representation based on pseudo-spin degrees of freedom. The direction of the pseudo-spin on a Bloch sphere describes the degree of contributions from the two magnetic sublattices to the spin moment carried by the magnon. The momentum dependent fictitious Zeeman field determines the direction of the pseudo-spin and thus becomes the control parameter of the spin texture, which is explicitly described by the original model parameters. The framework enabled us to clarify the uncovered aspect of the Kitaev interaction, and further provides a tool to easily design or explore materials with intriguing magnetic properties. Since these spin textures can be a source of a pure spin current, the Kitaev materials $A_{2}$PrO$_{3}$ ($A$ =Li, Na) shall become a potential platform of power-saving spintronics devices.
How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.
We map the problem of the orbital excitation (orbiton) in a 2D antiferromagnetic and ferroorbital ground state onto a problem of a hole in 2D antiferromagnet. The orbiton turns out to be coupled to magnons and can only be mobile on a strongly renormalized scale by dressing with magnetic excitations. We show that this leads to a dispersion relation reflecting the two-site unit cell of the antiferromagnetic background, in contrast to the predictions based on a mean-field approximation and linear orbital-wave theory.