No Arabic abstract
We present a (sub)millimeter line survey of the methanol maser outflow located in the massive star-forming region DR21(OH) carried out with the Submillimeter Array (SMA) at 217/227 GHz and 337/347 GHz. We find transitions from several molecules towards the maser outflow such as CH$_3$OH, H$_2$CS, C$^{17}$O, H$^{13}$CO$^+$ and C$^{34}$S. However, with the present observations, we cannot discard the possibility that some of the observed species such as C$^{17}$O, C$^{34}$S, and H$_2$CS, might be instead associated with the compact and dusty continuum sources located in the MM2 region. Given that most of transitions correspond to methanol lines, we have computed a rotational diagram with CASSIS and a LTE synthetic spectra with XCLASS for the detected methanol lines in order to estimate the rotational temperature and column density in small solid angle of the outflow where enough lines are present. We obtain a rotational temperature of $28pm 2.5$K and a column density of $6.0pm 0.9 times 10^{15}$ cm$^{-2}$. These values are comparable to those column densities/rotational temperatures reported in outflows emanating from low-mass stars. Extreme and moderate physical conditions to excite the maser and thermal emission coexist within the CH$_3$OH flow. Finally, we do not detect any complex molecules associated with the flow, e.g., CH3OCHO, (CH3)2CO, and CH$_3$CH$_2$CN.
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the star forming region DR21(OH). In a 219 Jy/beam maser centered at an LSR velocity of 0.83 km s$^{-1}$, we find a 20-$sigma$ detection of $zB_{text{los}} = 53.5 pm 2.7$ Hz. If 44 GHz methanol masers are excited at $n sim 10^{7-8}$ cm$^{-3}$, then the $B~vs.~n^{1/2}$ relation would imply from comparison with Zeeman effect detections in the CN($1-0$) line toward DR21(OH) that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be $sim$10 mG. Together with our detected $zB_{text{los}} = 53.5$ Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor $z$ is $sim$5 Hz mG$^{-1}$. Such small values of $z$ would not be a surprise, as the methanol molecule is non paramagnetic, like H$_2$O. Empirical attempts to determine $z$, as demonstrated, are important because currently there are no laboratory measurements or theoretically calculated values of $z$ for the 44 GHz methanol transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
We report high sensitivity sub-arcsecond angular resolution observations of the massive star forming region DR21(OH) at 3.6, 1.3, and 0.7 cm obtained with the Very Large Array. In addition, we conducted observations of CH3OH 44 GHz masers. We detected more than 30 new maser components in the DR21(OH) region. Most of the masers appear to trace a sequence of bow-shocks in a bipolar outflow. The cm continuum observations reveal a cluster of radio sources; the strongest emission is found toward the molecular core MM1. The radio sources in MM1 are located about 5 north of the symmetry center of the CH3OH outflow, and therefore, they are unlikely to be associated with the outflow. Instead, the driving source of the outflow is likely located in the MM2 core. Although based on circumstantial evidence, the radio continuum from MM1 appears to trace free-free emission from shock-ionized gas in a jet. The orientation of the putative jet in MM1 is approximately parallel to the CH3OH outflow and almost perpendicular to the large scale molecular filament that connects DR21 and DR21(OH). This suggests that the (accretion) disks associated with the outflows/jets in the DR21 - DR21(OH) region have symmetry axes mostly perpendicular to the filament.
Context: OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Aims: We identify the ground-state OH masers at 18cm wavelength in the area covered by ``The HI/OH/Recombination line survey of the Milky Way (THOR). We present a catalogue of all OH maser features and their possible associated environments. Methods: The THOR survey covers longitude and latitude ranges of 14.3<l<66.8 and b<1.25 deg. All OH ground state lines at 1612, 1665, 1667 and 1720MHz have been observed, employing the Very Large Array. The spatial resolution of the data varies between 12.5 and 19, the spectral resolution is 1.5km/s, and the rms sensitivity of the data is ~10mJy/beam per channel. Results: We identify 1585 individual maser spots distributed over 807 maser sites. Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38km/s. In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal 13CO(1-0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form.
Context. The molecular composition of interstellar ice mantles is defined by gas-grain processes in molecular clouds, with the main components being $H_2O$, $CO$, and $CO_2$. $CH_3OH$ ice is detected towards the denser regions, where large amounts of $CO$ freeze out and get hydrogenated. Heating from nearby protostars can further change the ice structure and composition. Despite the several observations of icy features towards molecular clouds and along the line of site of protostars, it is not yet clear if interstellar ices are mixed or if they have a layered structure. Aims. We aim to examine the effect of mixed and layered ice growth in ice mantle analogues, with focus on the position and shape of methanol infrared bands, so future observations could shed light on the structure of interstellar ices in different environments. Methods. Mixed and layered ice samples were deposited on a cold substrate kept at T = 10 K using a closed-cycle cryostat placed in a vacuum chamber. The spectroscopic features were analysed by FTIR spectroscopy. Different proportions of the most abundant four molecules in ice mantles, namely $H_2O$, $CO$, $CO_2$, and $CH_3OH$, were investigated, with special attention on the analysis of the $CH_3OH$ bands. Results. We measure changes in the position and shape of the CH and CO stretching bands of $CH_3OH$ depending on the mixed or layered nature of the ice sample. Spectroscopic features of methanol are also found to change due to heating. Conclusions. A layered ice structure best reproduces the $CH_3OH$ band position recently observed towards a pre-stellar core and in star-forming regions. Based on our experimental results, we conclude that observations of $CH_3OH$ ices can provide information about the structure of interstellar ices, and we expect JWST to put stringent constraints on the layered or mixed nature of ices in different interstellar environments.
(Abridged) We have observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on board Herschel, in DR21(OH), a high mass star forming region. Several transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM 30m telescope. A gas and grain warm-up model was used to identify the primary C3 forming reactions in DR21(OH). We have detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1 and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) & P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is sim6x10^{-10} and sim3x10^{-9} respectively. For CCH and c-C3H2 we only detect emission from the envelope and MM1. The observed CCH, C3, and c-C3H2 abundances are most consistent with a chemical model with n(H2)sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time of sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the grain at tsim 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH) and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos. The observed lower C3 abundance in MM1 as compared to MM2 and the envelope could be indicative of destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.