Do you want to publish a course? Click here

First Commissioning Results of the Multicusp Ion Source at MIT (MIST-1) for H$_2^+$

91   0   0.0 ( 0 )
 Added by Daniel Winklehner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

IsoDAR is an experiment under development to search for sterile neutrinos using the isotope Decay-At-Rest (DAR) production mechanism, where protons impinging on $^9$Be create neutrons which capture on $^7$Li which then beta-decays producing $bar{ u}_e$. As this will be an isotropic source of $bar{ u}_e$, the primary driver current must be large (10 mA cw) for IsoDAR to have sufficient statistics to be conclusive within 5 years of running. H$_2^+$ was chosen as primary ion to overcome some of the space-charge limitations during low energy beam transport and injection into a compact cyclotron. The H$_2^+$ will be stripped into protons before the target. At MIT, a multicusp ion source (MIST-1) was designed and built to produce a high intensity beam with a high H$_2^+$ fraction. MIST-1 is now operational at the Plasma Science and Fusion Center (PSFC) at MIT and under commissioning.

rate research

Read More

X-rays have widespread applications in science and industry, but developing a simple, compact, and high-quality X-ray source remains a challenge. Our collaboration has explored the possible use of channeling radiation driven by a 50 MeV low-emittance electron beam to produce narrowband hard X-rays with photon energy of 40 to 140 keV. Here we present the simulated X-ray spectra including the background bremsstrahlung contribution, and a description of the required optimization of the relevant electron-beam parameters necessary to maximize brilliance of the resulting X-ray beam. Results are presented from our test of this, carried out at the Fermilab Accelerator Science & Technology (FAST) facilitys 50-MeV low-energy electron injector. As a result of the beam parameters, made possible by the photo-injector based SRF linac, the average brilliance at FAST was expected to be about one order of magnitude higher than that in previous experiments.
234 - E.R. Harms , M. Awida , C. Baffes 2018
A new test stand dedicated to Superconducting Radiofrequency (SRF) cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.
The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.
Over the last years, the generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics and advanced high gradient accelerating schemes such as plasma accelerators or dielectric laser accelerators. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D facility ARES at DESY will provide such probe beams in the upcoming years. After the setup of the normal-conducting RF photoinjector and linear accelerating structures, ARES successfully started the beam commissioning of the RF gun. This paper gives an overview of the ARES photoinjector setup and summarizes the results of the gun commissioning process. The quality of the first generated electron beams is characterized in terms of charge, momentum, momentum spread and beam size. Additionally, the dependencies of the beam parameters on RF settings are investigated. All measurement results of the characterized beams fulfill the requirements to operate the ARES linac with this RF photoinjector.
The upgrade of the current BESIII Endcap TOF (ETOF) is carried out with the Multi-gap Resistive Plate Chamber (MRPC) technology. The installation of the new ETOF has been finished in October 2015. The first results of the MRPCs commissioning at BESIII are reported in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا