No Arabic abstract
We have derived the mean proper motions and space velocities of 154 Galactic globular clusters and the velocity dispersion profiles of 141 globular clusters based on a combination of Gaia DR2 proper motions with ground-based line-of-sight velocities. Combining the velocity dispersion profiles derived here with new measurements of the internal mass functions allows us to model the internal kinematics of 144 clusters, more than 90% of the currently known Galactic globular cluster population. We also derive the initial cluster masses by calculating the cluster orbits backwards in time applying suitable recipes to account for mass loss and dynamical friction. We find a correlation between the stellar mass function of a globular cluster and the amount of mass lost from the cluster, pointing to dynamical evolution as one of the mechanisms shaping the mass function of stars in clusters. The mass functions also show strong evidence that globular clusters started with a bottom-light initial mass function. Our simulations show that the currently surviving globular cluster population has lost about 80% of its mass since the time of formation. If globular clusters started from a log-normal mass function, we estimate that the Milky Way contained about 500 globular clusters initially, with a combined mass of about $2.5 cdot 10^8$ $M_odot$. For a power-law initial mass function, the initial mass in globular clusters could have been a factor of three higher.
We collected radial velocities of more than 50.000 individual stars in 156 Galactic globular clusters (GGC) and matched them with HST photometry and Gaia DR2 proper motions. This allowed us to derive the GGCs mean proper motions and space velocities. By fitting a large set of N-body simulations to their velocity dispersion and surface density profiles, combined with new measurements of their internal radially dependent mass functions, we have determined their present-day masses and structural parameters, and for 144 GGCs their internal kinematics. We also derive the initial cluster masses by calculating the cluster orbits backwards in time applying suitable recipes to account for mass-loss and dynamical friction. The new fundamental parameters of GGCs are publicly available via an online database, which will regularly be updated.
Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galactic GCs. We highlight some of our exciting recent results: the first directly-measured radial anisotropy profiles for a large sample of GCs; the first dynamical distance and mass-to-light (M/L) ratio estimates for a large sample of GCs; and the first dynamically-determined masses for hundreds of blue-straggler stars (BSSs) across a large GC sample.
We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho-Gaia Astrometric Solution (TGAS) catalogue from Gaia Data Release 1 (DR1), and identify five members of NGC104 (47 Tucanae), one member of NGC5272 (M3), five members of NGC6121 (M4), seven members of NGC6397, and two members of NGC6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors, and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope (HST) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST. By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.
The 3D velocities of M31 and M33 are important for understanding the evolution and cosmological context of the Local Group. Their most massive stars are detected by Gaia, and we use Data Release 2 (DR2) to determine the galaxy proper motions (PMs). We select galaxy members based on, e.g., parallax, PM, color-magnitude-diagram location, and local stellar density. The PM rotation of both galaxies is confidently detected, consistent with the known line-of-sight rotation curves: $V_{rm rot} = -206pm86$ km s$^{-1}$ (counter-clockwise) for M31, and $V_{rm rot} = 80pm52$ km s$^{-1}$ (clockwise) for M33. We measure the center-of-mass PM of each galaxy relative to surrounding background quasars in DR2. This yields that $({mu}_{alpha*},{mu}_{delta})$ equals $(65 pm 18 , -57 pm 15)$ $mu$as yr$^{-1}$ for M31, and $(31 pm 19 , -29 pm 16)$ $mu$as yr$^{-1}$ for M33. In addition to the listed random errors, each component has an additional residual systematic error of 16 $mu$as yr$^{-1}$. These results are consistent at 0.8$sigma$ and 1.0$sigma$ with the (2 and 3 times higher-accuracy) measurements already available from Hubble Space Telescope (HST) optical imaging and VLBA water maser observations, respectively. This lends confidence that all these measurements are robust. The new results imply that the M31 orbit towards the Milky Way is somewhat less radial than previously inferred, $V_{rm tan, DR2+HST} = 57^{+35}_{-31}$ km s$^{-1}$, and strengthen arguments that M33 may be on its first infall into M31. The results highlight the future potential of Gaia for PM studies beyond the Milky Way satellite system.
We present the first results of the Multi-Instrument Kinematic Survey of Galactic Globular Clusters, a project aimed at exploring the internal kinematics of a representative sample of Galactic globular clusters from the radial velocity of individual stars, covering the entire radial extension of each system. This is achieved by exploiting the formidable combination of multi-object and integral field unit spectroscopic facilities of the ESO Very Large Telescope. As a first step, here we discuss the results obtained for 11 clusters from high and medium resolution spectra acquired through a combination of FLAMES and KMOS observations. We provide the first kinematical characterization of NGC 1261 and NGC 6496. In all the surveyed systems, the velocity dispersion profile declines at increasing radii, in agreement with the expectation from the King model that best fits the density/luminosity profile. In the majority of the surveyed systems we find evidence of rotation within a few half-mass radii from the center. These results are in general overall agreement with the predictions of recent theoretical studies, suggesting that the detected signals could be the relic of significant internal rotation set at the epoch of the clusters formation.