No Arabic abstract
A two-layer fluid system separated by a pycnocline in the form of an internal wave is considered. The lower layer is infinitely deep, with a higher density than the upper layer which is bounded above by a flat surface. The fluids are incompressible and inviscid. A Hamiltonian formulation for the fluid dynamics is presented and it is shown that an appropriate scaling leads to the integrable Benjamin-Ono equation.
The periodic Benjamin-Ono equation is an autonomous Hamiltonian system with a Gibbs measure on $L^2({mathbb T})$. The paper shows that the Gibbs measures on bounded balls of $L^2$ satisfy some logarithmic Sobolev inequalities. The space of $n$-soliton solutions of the periodic Benjamin-Ono equation, as discovered by Case, is a Hamiltonian system with an invariant Gibbs measure. As $nrightarrowinfty$, these Gibbs measures exhibit a concentration of measure phenomenon. Case introduced soliton solutions that are parameterised by atomic measures in the complex plane. The limiting distributions of these measures gives the density of a compressible gas that satisfies the isentropic Euler equations.
The Benjamin Ono equation with a slowly varying potential is $$ text{(pBO)} qquad u_t + (Hu_x-Vu + tfrac12 u^2)_x=0 $$ with $V(x)=W(hx)$, $0< h ll 1$, and $Win C_c^infty(mathbb{R})$, and $H$ denotes the Hilbert transform. The soliton profile is $$Q_{a,c}(x) = cQ(c(x-a)) ,, text{ where } Q(x) = frac{4}{1+x^2}$$ and $ain mathbb{R}$, $c>0$ are parameters. For initial condition $u_0(x)$ to (pBO) close to $Q_{0,1}(x)$, it was shown in a previous work by Z. Zhang that the solution $u(x,t)$ to (pBO) remains close to $Q_{a(t),c(t)}(x)$ and approximate parameter dynamics for $(a,c)$ were provided, on a dynamically relevant time scale. In this paper, we prove exact $(a,c)$ parameter dynamics. This is achieved using the basic framework of the previous work by Z. Zhang but adding a local virial estimate for the linearization of (pBO) around the soliton. This is a local-in-space estimate averaged in time, often called a local smoothing estimate, showing that effectively the remainder function in the perturbation analysis is smaller near the soliton than globally in space. A weaker version of this estimate is proved in a paper by Kenig & Martel as part of a ``linear Liouville result, and we have adapted and extended their proof for our application.
We consider the generalized Benjamin-Ono (gBO) equation on the real line, $ u_t + partial_x (-mathcal H u_{x} + tfrac1{m} u^m) = 0, x in mathbb R, m = 2,3,4,5$, and perform numerical study of its solutions. We first compute the ground state solution to $-Q -mathcal H Q^prime +frac1{m} Q^m = 0$ via Petviashvilis iteration method. We then investigate the behavior of solutions in the Benjamin-Ono ($m=2$) equation for initial data with different decay rates and show decoupling of the solution into a soliton and radiation, thus, providing confirmation to the soliton resolution conjecture in that equation. In the mBO equation ($m=3$), which is $L^2$-critical, we investigate solutions close to the ground state mass, and, in particular, we observe the formation of stable blow-up above it. Finally, we focus on the $L^2$-supercritical gBO equation with $m=4,5$. In that case we investigate the global vs finite time existence of solutions, and give numerical confirmation for the dichotomy conjecture, in particular, exhibiting blow-up phenomena in the supercritical setting.
We consider a higher-dimensional version of the Benjamin-Ono (HBO) equation in the 2D setting: $u_t- mathcal{R}_1 Delta u + frac{1}{2}(u^2)_x=0, (x,y) in mathbb{R}^2$, which is $L^2$-critical, and investigate properties of solutions both analytically and numerically. For a generalized equation (fractional 2D gKdV) after deriving the Pohozaev identities, we obtain non-existence conditions for solitary wave solutions, then prove uniform bounds in the energy space or conditional global existence, and investigate the radiation region, a specific wedge in the negative $x$-direction. We then introduce our numerical approach in a general context, and apply it to obtain the ground state solution in the 2D critical HBO equation, then show that its mass is a threshold for global vs. finite time existing solutions, which is typical in the focusing (mass-)critical dispersive equations. We also observe that globally existing solutions tend to disperse completely into the radiation in this nonlocal equation. The blow-up solutions travel in the positive $x$-direction with the rescaled ground state profile while also radiating dispersive oscillations into the radiative wedge. We conclude with examples of different interactions of two solitary wave solutions, including weak and strong interactions.
In this paper we prove that the Benjamin-Ono equation, when considered on the torus, is an integrable (pseudo)differential equation in the strongest possible sense: it admits global Birkhoff coordinates on the space $L^2(T)$. These are coordinates which allow to integrate it by quadrature and hence are also referred to as nonlinear Fourier coefficients. As a consequence, all the $L^2(T)$ solutions of the Benjamin--Ono equation are almost periodic functions of the time variable. The construction of such coordinates relies on the spectral study of the Lax operator in the Lax pair formulation of the Benjamin--Ono equation and on the use of a generating functional, which encodes the entire Benjamin--Ono hierarchy.