Do you want to publish a course? Click here

On the covariance of scalar averaging and backreaction in relativistic inhomogeneous cosmology

72   0   0.0 ( 0 )
 Added by Thomas Buchert
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a generalization of the 4-dimensional averaging window function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of applications. The covariant nature of spatial scalar averaging schemes to address the averaging problem in relativistic cosmology is an important property that is implied by construction, but usually remains implicit. We employ here the approach of Gasperini et al. for two reasons. First, the formalism and its generalization presented here are manifestly covariant. Second, the formalism is convenient for disentangling the dependencies on foliation, volume measure, and boundaries in the averaged expressions entering in scalar averaging schemes. These properties will prove handy for simplifying expressions, but also for investigating extremal foliations and for comparing averaged properties of different foliations directly. The proposed generalization of the window function allows for choosing the most appropriate averaging scheme for the physical problem at hand, and for distinguishing between the role of the foliation itself and the role of the volume measure in averaged dynamic equations. We also show that one particular window function obtained from this generalized class results in an averaging scheme corresponding to that of a recent investigation by Buchert, Mourier and Roy (2018) and, as a byproduct, we explicitly show that the general equations for backreaction derived therein are covariant.



rate research

Read More

Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic matter sector is implemented as a $j$-form (field-strength level), where $j,in,{1,3}$, and the spaces studied are Bianchi space-times of solvable type. Walds no-hair theorem is extended to include the $j$-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI$_0$, VI$_h$, VII$_0$ and VII$_h$, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of ~[1], with some remarks towards new results which will be further laid out in upcoming work.
No. In a number of papers Green and Wald argue that the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects. In particular, they argue that the effect of inhomogeneities on average properties of the Universe (backreaction) is irrelevant. We show that this latter claim is not valid. Specifically, we demonstrate, referring to their recent review paper, that (i) their two-dimensional example used to illustrate the fitting problem differs from the actual problem in important respects, and it assumes what is to be proven; (ii) the proof of the trace-free property of backreaction is unphysical and the theorem about it fails to be a mathematically general statement; (iii) the scheme that underlies the trace-free theorem does not involve averaging and therefore does not capture crucial non-local effects; (iv) their arguments are to a large extent coordinate-dependent, and (v) many of their criticisms of backreaction frameworks do not apply to the published definitions of these frameworks. It is therefore incorrect to infer that Green and Wald have proven a general result that addresses the essential physical questions of backreaction in cosmology.
We consider the late time one-loop quantum backreaction from inflationary fluctuations of a non-minimally coupled, massless scalar field. The scalar is assumed to be a spectator field in an inflationary model with a constant principal slow roll $epsilon$ parameter. We regulate the infrared by matching onto a pre-inflationary radiation era. We find a large late time backreaction when the nonminimal coupling $xi$ is negative (in which case the scalar exhibits a negative mass term during inflation). The one-loop quantum backreaction becomes significant today for moderately small non-minimal couplings, $xisim -1/20$, and it changes sign (from negative to positive) at a recent epoch when inflation lasts not much longer than what is minimally required, $N gtrsim 66$. Since currently we do not have a way of treating the classical fluid and the quantum backreaction in a self-consistent manner, we cannot say decidely whether the backreaction from inflationary quantum fluctuations of a non-minimally coupled scalar can mimic dark energy.
The subject of cosmological backreaction in General Relativity is often approached by coordinate-dependent and metric-based analyses. We present in this letter an averaging formalism for the scalar parts of Einsteins equations that is coordinate-independent and only functionally depends on a metric. This formalism is applicable to general 3+1 foliations of spacetime for an arbitrary fluid with tilted flow. We clarify the dependence on spacetime foliation and argue that this dependence is weak in cosmological settings. We also introduce a new set of averaged equations that feature a global cosmological time despite the generality of the setting, and we put the statistical nature of effective cosmologies into perspective.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا