Do you want to publish a course? Click here

Impacts of EUV Wavefronts on Coronal Structures in Homologous Coronal Mass Ejections

107   0   0.0 ( 0 )
 Added by Rui Liu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large-scale propagating fronts are frequently observed during solar eruptions, yet it is open whether they are waves or not, partly because the propagation is modulated by coronal structures, whose magnetic field we still cannot measure. However, when a front impacts coronal structures, an opportunity arises for us to look into the magnetic properties of both interacting parties in the low-$beta$ corona. Here we studied large-scale EUV fronts accompanying three coronal mass ejections (CMEs), each originating from a kinking rope-like structure in the NOAA active region (AR) 12371. These eruptions were homologous and the surrounding coronal structures remained stationary. Hence we treated the events as one observed from three different viewing angles, and found that the primary front directly associated with the CME consistently transmits through 1) a polar coronal hole, 2) the ends of a crescent-shaped equatorial coronal hole, leaving a stationary front outlining its AR-facing boundary, and 3) two quiescent filaments, producing slow and diffuse secondary fronts. The primary front also propagates along an arcade of coronal loops and slows down due to foreshortening at the far side, where local plasma heating is indicated by an enhancement in 211 {AA} (Fe XIV) but a dimming in 193 {AA} (Fe XII) and 171 {AA} (Fe IX). The strength of coronal magnetic field is therefore estimated to be $sim,$2 G in the polar coronal hole and $sim,$4 G in the coronal arcade neighboring the active region. These observations substantiate the wave nature of the primary front and shed new light on slow fronts.

rate research

Read More

With the global view and high-cadence observations from SDO/AIA and STEREO, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for sympathetic events are still largely unknown. In this study, we investigate the impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics (MHD) model and initiate coronal mass ejections (CMEs) in active region (AR) 11158 by inserting Gibson-Low analytical flux ropes. We show that a CMEs impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME with the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increasing the decay index. This effect may provide a primary coupling mechanism underlying the sympathetic eruptions. The magnitude of the impact is found to depend on the orientation of the erupting flux rope, with the largest impacts occurring when the flux rope is favorably oriented for reconnecting with the surrounding regions. Outside the CME expansion domain, the influence of the CME is mainly through field line compression or post-eruption relaxation. Based on our numerical experiments, we discuss a way to quantify the eruption impact, which could be useful for forecasting purposes.
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by STEREO/EUVI and compared their properties with the mass and speed of the associated CMEs. The unique position of satellites allowed us to compare our findings with the results from Dissauer et al. (2018b, 2019), who studied the same events observed against the solar disk by SDO/AIA. Such statistics is done for the first time and confirms the relation of coronal dimmings and CME parameters for the off-limb viewpoint. The observations of dimming regions from different lines-of-sight reveal a similar decrease in the total EUV intensity ($c=0.60pm0.14$). We find that the (projected) dimming areas are typically larger for off-limb observations (mean value of $1.24pm1.23times10^{11}$ km$^2$ against $3.51pm0.71times10^{10}$ km$^2$ for on-disk), with a correlation of $c=0.63pm0.10$. This systematic difference can be explained by the (weaker) contributions to the dimming regions higher up in the corona, that cannot be detected in the on-disk observations. The off-limb dimming areas and brightnesses show very strong correlations with the CME mass ($c=0.82pm0.06$ and $c=0.75pm0.08$), whereas the dimming area and brightness change rate correlate with the CME speed ($csim0.6$). Our findings suggest that coronal dimmings have the potential to provide early estimates of mass and speed of Earth-directed CMEs, relevant for space weather forecasts, for satellite locations both at L1 and L5.
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
89 - Heidi Korhonen 2016
Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets form and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Halpha, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا