Do you want to publish a course? Click here

Binary White Dwarfs as Laboratories for Extreme Gravity with LISA

107   0   0.0 ( 0 )
 Added by Tyson Littenberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of low-frequency gravitational waves with the Laser Interferometer Space Antenna will allow the study of new sources of gravitational radiation that are not accessible by ground-based instruments. Gravitational wave sources provide invaluable information both about their astrophysics, as well as the nature of the gravitational interaction in their neighborhoods. One low frequency source that has not received much attention regarding the latter are galactic binaries composed of two white dwarves or a white dwarf and a neutron star. We here show that, contrary to the common lore, such gravitational wave sources can indeed be used to constrain an important feature of the gravitational interaction: the absence of pre-Newtonian, dipolar dissipation. We propose a model-independent framework to carry out a null test for the presence of this feature in the data that is very much analogous to tests of General Relativity with radio-observations of binary pulsars. We then go one step further and specialize this test to scalar-tensor theories to derive projected constraints on spontaneous scalarization. We find that these constraints can be comparable to current bounds with binary pulsars, and in some optimistic cases, they can be even stronger.



rate research

Read More

58 - Jordi Isern 2020
The shape of the luminosity function of white dwarfs (WDLF) is sensitive to the characteristic cooling time and, therefore, it can be used to test the existence of additional sources or sinks of energy such as those predicted by alternative physical theories. However, because of the degeneracy between the physical properties of white dwarfs and the properties of the Galaxy, the star formation history (SFH) and the IMF, it is almost always possible to explain any anomaly as an artifact introduced by the star formation rate. To circumvent this problem there are at least two possibilities, the analysis of the WDLF in populations with different stories, like disc and halo, and the search of effects not correlated with the SFH. These procedures are illustrated with the case of axions.
We consider here a robust study of stellar dynamics for White Dwarf Stars with polytropic matter in the weak field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze its stability and compactness, in order to show whether it is possible to be close to the conventional wisdom of white dwarfs dynamics. Our results predicts an average value of brane tension as: $langlelambdaranglegtrsim84.818;rm MeV^4$, with a standard deviation $sigmasimeq82.021;rm MeV^4$ which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining above of cosmological results provided by nucleosynthesis among others.
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at least a handful of eccentric DWDs, given their formation rate and typical lifetimes estimated from current cluster simulations. Consequently the association of eccentricity with stellar-mass LISA sources does not uniquely involve neutron stars, as is usually assumed. Due to the difficulty of detecting (eccentric) DWDs with present and planned electromagnetic observatories, LISA could provide unique dynamical identifications of these systems in globular clusters.
In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, na-mely, $f(R,T)$ gravity, for which $R$ and $T$ stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form $f(R,T)=R+2lambda T$, with $lambda$ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter $lambda$ are derived. More massive and larger white dwarfs are found for negative values of $lambda$ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of $f(R,T)$ theory for massive white dwarfs is the increase of the radius in comparison with GR and also $f(R)$ results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for $lambda$, namely, $lambda >- 3times 10^{-4}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا