Do you want to publish a course? Click here

Determining a random Schrodinger equation with unknown source and potential

247   0   0.0 ( 0 )
 Added by Shiqi Ma
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We are concerned with the direct and inverse scattering problems associated with a time-harmonic random Schrodinger equation with unknown source and potential terms. The well-posedness of the direct scattering problem is first established. Three uniqueness results are then obtained for the corresponding inverse problems in determining the variance of the source, the potential and the expectation of the source, respectively, by the associated far-field measurements. First, a single realization of the passive scattering measurement can uniquely recover the variance of the source without the a priori knowledge of the other unknowns. Second, if active scattering measurement can be further obtained, a single realization can uniquely recover the potential function without knowing the source. Finally, both the potential and the first two statistic moments of the random source can be uniquely recovered with full measurement data. The major novelty of our study is that on the one hand, both the random source and the potential are unknown, and on the other hand, both passive and active scattering measurements are used for the recovery in different scenarios.



rate research

Read More

72 - Hongyu Liu , Shiqi Ma 2020
In this paper, we study an inverse scattering problem associated with the stationary Schrodinger equation where both the potential and the source terms are unknown. The source term is assumed to be a generalised Gaussian random distribution of the microlocally isotropic type, whereas the potential function is assumed to be deterministic. The well-posedness of the forward scattering problem is first established in a proper sense. It is then proved that the rough strength of the random source can be uniquely recovered, independent of the unknown potential, by a single realisation of the passive scattering measurement. We develop novel techniques to completely remove a restrictive geometric condition in our earlier study [25], at an unobjectionable cost of requiring the unknown potential to be deterministic. The ergodicity is used to establish the single realization recovery, and the asymptotic arguments in our analysis are based on techniques from the theory of pseudo-differential operators and the stationary phase principle.
We study an inverse scattering problem associated with a Schrodinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered. The ergodicity is used to establish the single realization recovery. The asymptotic arguments in our study are based on the theories of pseudodifferential operators and microlocal analysis.
We consider the inverse problem of determining the time and space dependent electromagnetic potential of the Schrodinger equation in a bounded domain of $mathbb R^n$, $ngeq 2$, by boundary observation of the solution over the entire time span. Assuming that the divergence of the magnetic potential is fixed, we prove that the electric potential and the magnetic potential can be Holder stably retrieved from these data, whereas stability estimates for inverse time-dependent coefficients problems of evolution partial differential equations are usually of logarithmic type.
125 - Sheng Wang , Chengbin Xu 2021
In this paper, we show the scattering of the solution for the focusing inhomogenous nonlinear Schrodinger equation with a potential begin{align*} ipartial_t u+Delta u- Vu=-|x|^{-b}|u|^{p-1}u end{align*} in the energy space $H^1(mathbb R^3)$. We prove a scattering criterion, and then we use it together with Morawetz estimate to show the scattering theory.
In this article we prove a reducibility result for the linear Schrodinger equation on a Zoll manifold with quasi-periodic in time pseudo-differential perturbation of order less or equal than $1/2$. As far as we know, this is the first reducibility results for an unbounded perturbation of a linear system which is not integrable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا