No Arabic abstract
We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown positions and orientations that we aim at retrieving. We propose a continuous-domain additive image model, where the analyzed image is the sum of the patterns to localize and a background with self-similar isotropic power-spectrum. We are then able to compute the optimal filter fulfilling the SNR criterion based on one single template and background pair: it strongly responds to the template while being optimally decoupled from the background model. In addition, we constrain our filter to be steerable, which allows for a fast template detection together with orientation estimation. In practice, the implementation requires to discretize a continuous-domain formulation on polar grids, which is performed using quadratic radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments. We show that the detection performance drastically improves when we exploit the statistics of the background via its power-spectrum decay, which we refer to as spectral-shaping. The proposed scheme outperforms state-of-the-art steerable methods by up to 50% of absolute detection performance.
The detection of landmarks or patterns is of interest for extracting features in biological images. Hence, algorithms for finding these keypoints have been extensively investigated in the literature, and their localization and detection properties are well known. In this paper, we study the complementary topic of local orientation estimation, which has not received similar attention. Simply stated, the problem that we address is the following: estimate the angle of rotation of a pattern with steerable filters centered at the same location, where the image is corrupted by colored isotropic Gaussian noise. For this problem, we use a statistical framework based on the Cram{e}r-Rao lower bound (CRLB) that sets a fundamental limit on the accuracy of the corresponding class of estimators. We propose a scheme to measure the performance of estimators based on steerable filters (as a lower bound), while considering the connection to maximum likelihood estimation. Beyond the general results, we analyze the asymptotic behaviour of the lower bound in terms of the order of steerablility and propose an optimal subset of components that minimizes the bound. We define a mechanism for selecting optimal subspaces of the span of the detectors. These are characterized by the most relevant angular frequencies. Finally, we project our template to a basis of steerable functions and experimentally show that the prediction accuracy achieves the predicted CRLB. As an extension, we also consider steerable wavelet detectors.
We designed and implemented a signal generator that can simulate the output of the NaI (Tl)CsI (Na) detectors pre amplifier onboard the Hard X ray Modulation Telescope (HXMT). Using the development of FPGA (Field Programmable Gate Array) with VHDL language and adding random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of signal amplitude is programmable. The occurrence time intervals of adjacent signals content negative exponential distribution statistically.
Compressed Sensing Magnetic Resonance Imaging (CS-MRI) significantly accelerates MR data acquisition at a sampling rate much lower than the Nyquist criterion. A major challenge for CS-MRI lies in solving the severely ill-posed inverse problem to reconstruct aliasing-free MR images from the sparse k-space data. Conventional methods typically optimize an energy function, producing reconstruction of high quality, but their iterative numerical solvers unavoidably bring extremely slow processing. Recent data-driven techniques are able to provide fast restoration by either learning direct prediction to final reconstruction or plugging learned modules into the energy optimizer. Nevertheless, these data-driven predictors cannot guarantee the reconstruction following constraints underlying the regularizers of conventional methods so that the reliability of their reconstruction results are questionable. In this paper, we propose a converged deep framework assembling principled modules for CS-MRI that fuses learning strategy with the iterative solver of a conventional reconstruction energy. This framework embeds an optimal condition checking mechanism, fostering emph{efficient} and emph{reliable} reconstruction. We also apply the framework to two practical tasks, emph{i.e.}, parallel imaging and reconstruction with Rician noise. Extensive experiments on both benchmark and manufacturer-testing images demonstrate that the proposed method reliably converges to the optimal solution more efficiently and accurately than the state-of-the-art in various scenarios.
In the past three decades, a large number of metaheuristics have been proposed and shown high performance in solving complex optimization problems. While most variation operators in existing metaheuristics are empirically designed, this paper aims to design new operators automatically, which are expected to be search space independent and thus exhibit robust performance on different problems. For this purpose, this work first investigates the influence of translation invariance, scale invariance, and rotation invariance on the search behavior and performance of some representative operators. Then, we deduce the generic form of translation, scale, and rotation invariant operators. Afterwards, a principled approach is proposed for the automated design of operators, which searches for high-performance operators based on the deduced generic form. The experimental results demonstrate that the operators generated by the proposed approach outperform state-of-the-art ones on a variety of problems with complex landscapes and up to 1000 decision variables.
Higher dimensional classification has attracted more attentions with increasing demands for more flexible services in the Internet. In this paper, we present the design and implementation of a two dimensional router (TwoD router), that makes forwarding decisions based on both destination and source addresses. This TwoD router is also a key element in our current effort towards two dimensional IP routing. With one more dimension, the forwarding table will grow explosively given a straightforward implementation. As a result, it is impossible to fit the forwarding table to the current TCAM, which is the de facto standard despite its limited capacity. To solve the explosion problem, we propose a forwarding table structure with a novel separation of TCAM and SRAM. As such, we move the redundancies in expensive TCAM to cheaper SRAM, while the lookup speed is comparable with conventional routers. We also design the incremental update algorithms that minimize the number of accesses to memory. We evaluate our design with a real implementation on a commercial router, Bit-Engine 12004, with real data sets. Our design does not need new devices, which is favorable for adoption. The results also show that the performance of our TwoD router is promising.