Do you want to publish a course? Click here

Parallaxes of southern extremely cool objects III: 118 L & T dwarfs

482   0   0.0 ( 0 )
 Added by Richard Smart
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new results from the Parallaxes of Southern Extremely Cool dwarfs program to measure parallaxes, proper motions and multi-epoch photometry of L and early T dwarfs. The observations were made on 108 nights over the course of 8 years using the Wide Field Imager on the ESO 2.2m telescope. We present 118 new parallaxes of L & T dwarfs of which 52 have no published values and 24 of the 66 published values are preliminary estimates from this program. The parallax precision varies from 1.0 to 15.5 mas with a median of 3.8 mas. We find evidence for 2 objects with long term photometric variation and 24 new moving group candidates. We cross-match our sample to published photometric catalogues and find standard magnitudes in up to 16 pass-bands from which we build spectral energy distributions and H-R diagrams. This allows us to confirm the theoretically anticipated minimum in radius between stars and brown dwarfs across the hydrogen burning minimum mass. We find the minimum occurs between L2 and L6 and verify the predicted steep dependence of radius in the hydrogen burning regime and the gentle rise into the degenerate brown dwarf regime. We find a relatively young age of 2 Gyr from the kinematics of our sample.



rate research

Read More

330 - Y. Wang , R.L. Smart , Z. Shao 2018
We report new parallax measurements for ten L and early T type dwarfs, five of which have no previous published values, using observations over 3 years at the robotic Liverpool Telescope. The resulting parallaxes and proper motions have median errors of 2,mas and 1.5,mas/year respectively. Their space motions indicate they are all Galactic disk members. We combined this sample with other objects with astrometry from the Liverpool Telescope and with published literature astrometry to construct a sample of 260 L and early T type dwarfs with measured parallaxes, designated the Astrometry Sample. We study the kinematics of the Astrometry Sample, and derived a solar motion of $(U,V,W)_{bigodot} = (7.9pm1.7,13.2pm1.2,7.2pm1.0)$,kms~ with respect to the local standard of rest, in agreement with recent literature. We derive a kinematic age of 1.5-1.7,Gyr for the Astrometry Sample assuming the age increases monotonically with the total velocity for a given disk sample. This kinematic age is less than half literature values for other low mass dwarf samples. We believe this difference arises for two reasons (1) the sample is mainly composed of mid to late L dwarfs which are expected to be relatively young and (2) the requirement that objects have a measured parallax biases the sample to the brighter examples which tend to be younger.
We report the parallax and proper motion of five L dwarfs obtained with observations from the robotic Liverpool Telescope. Our derived proper motions are consistent with published values and have considerably smaller errors. Based on our spectral type versus absolute magnitude diagram, we do not find any evidence for binaries among our sample, or, at least no comparable mass binaries. Their space velocities locate them within the thin disk and based on the model comparisons they have solar-like abundances. For all five objects, we derived effective temperature, luminosity, radius, gravity and mass from a evolutionary model(CBA00) and our measured parallax; moreover, we derived their effective temperature by integrating observed optical and near-infrared spectra and model spectra (BSH06 or BT-Dusty respectively) at longer wavelengths to obtain bolometric {bf flux using} the classical Stefan-Boltzmann law: generally the three temperatures for one object derived using two different methods with three models are consistent, while at lower temperature(e.g. for L4) the differences among the three temperatures are slightly larger than that at higher temperature(e.g. for L1).
We present parallaxes of 11 mid-to-late T dwarfs observed in the UKIRT Infrared Deep Sky Survey. We use these results to test the reliability of model predictions in magnitude-color space, determine a magnitude-spectral type calibration, and, estimate a bolometric luminosity and effective temperature range for the targets. We used observations from the UKIRT WFCAM instrument pipeline processed at the Cambridge Astronomical Survey Unit. The parallaxes and proper motions of the sample were calculated using standard procedures. The bolometric luminosity was estimated using near- and mid-infrared observations with two different methods. The corresponding effective temperature ranges were found adopting a large age-radius range. We show the models are unable to predict the colors of the latest T dwarfs indicating the incompleteness of model opacities for NH3, CH4 and H2 as the temperature declines. We report the effective temperature ranges obtained.
We present trigonometric parallax and proper motion measurements for two T-type brown dwarfs. We derive our measurements from infrared laser guide star adaptive optics observations spanning five years from the ShaneAO/SHARCS and NIRC2/medium-cam instruments on the Shane and Keck telescopes, respectively. To improve our astrometric precision, we measure and apply a distortion correction to our fields for both instruments. We also transform the Keck and ShaneAO astrometric reference frames onto the ICRS using five-parameter parallax and proper motion solutions for background reference stars from Gaia DR2. Fitting for parallax and proper motion, we measure parallaxes of $73.5pm9.2$ mas and $70.1pm6.7$ mas for WISEJ19010703+47181688 (WISE1901) and WISEJ21543294+59421370 (WISE2154), respectively. We utilize Monte Carlo methods to estimate the error in our sparse field methods, taking into account overfitting and differential atmospheric refraction. Comparing to previous measurements in the literature, all of our parallax and proper motion values fall within $2sigma$ of the published measurements, and 4 of 6 measurements are within $1sigma$. These data are among the first parallax measurements of these T dwarfs and serve as precise measurements for calibrating stellar formation models. These two objects are the first results of an ongoing survey of T dwarfs with Keck/NIRC2 and the Shane Adaptive Optics system at Lick Observatory.
We present an Ultra-Cool Dwarf (UCD) catalogue compiled from low southern Galactic latitudes and mid-plane, from a cross-correlation of the 2MASS and SuperCOSMOS surveys. The catalogue contains 246 members identified from 5042 sq. deg. within 220 deg. <= l <= 360 deg. and 0 deg. < l <= 30 deg., for |b| <= 15 deg. Sixteen candidates are spectroscopically confirmed in the near-IR as UCDs with spectral types from M7.5V to L9. Our catalogue selection method is presented enabling UCDs from ~M8V to the L-T transition to be selected down to a 2MASS limiting magnitude of Ks ~= 14.5 mag. This method does not require candidates to have optical detections for catalogue inclusion. An optimal set of optical/near-IR and reduced proper-motion selection criteria have been defined that includes: an Rf and Ivn photometric surface gravity test, a dual Rf-band variability check, and an additional photometric classification scheme to selectively limit contaminants. We identify four candidates as possible companions to nearby Hipparcos stars -- observations are needed to identify these as potential benchmark UCD companions. We also identify twelve UCDs within a possible distance 20 pc, three are previously unknown of which two are estimated within 10 pc, complimenting the nearby volume-limited census of UCDs. An analysis of the catalogue spatial completeness provides estimates for distance completeness over three UCD MJ ranges, while Monte-Carlo simulations provide an estimate of catalogue areal completeness at the 75 per cent level. We estimate a UCD space density of Rho (total) = (6.41+-3.01)x10^3/pc^3 over the range of 10.5 <= MJ ~< 14.9, similar to values measured at higher Galactic latitudes (|b| ~> 10 deg.) in the field population and obtained from more robust spectroscopically confirmed UCD samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا