No Arabic abstract
This article describes the model we built that achieved 1st place in the OpenImage Visual Relationship Detection Challenge on Kaggle. Three key factors contribute the most to our success: 1) language bias is a powerful baseline for this task. We build the empirical distribution $P(predicate|subject,object)$ in the training set and directly use that in testing. This baseline achieved the 2nd place when submitted; 2) spatial features are as important as visual features, especially for spatial relationships such as under and inside of; 3) It is a very effective way to fuse different features by first building separate modules for each of them, then adding their output logits before the final softmax layer. We show in ablation study that each factor can improve the performance to a non-trivial extent, and the model reaches optimal when all of them are combined.
In autonomous driving, goal-based multi-trajectory prediction methods are proved to be effective recently, where they first score goal candidates, then select a final set of goals, and finally complete trajectories based on the selected goals. However, these methods usually involve goal predictions based on sparse predefined anchors. In this work, we propose an anchor-free model, named DenseTNT, which performs dense goal probability estimation for trajectory prediction. Our model achieves state-of-the-art performance, and ranks 1st on the Waymo Open Dataset Motion Prediction Challenge.
In this technical report, we present key details of our winning panoptic segmentation architecture EffPS_b1bs4_RVC. Our network is a lightweight version of our state-of-the-art EfficientPS architecture that consists of our proposed shared backbone with a modified EfficientNet-B5 model as the encoder, followed by the 2-way FPN to learn semantically rich multi-scale features. It consists of two task-specific heads, a modified Mask R-CNN instance head and our novel semantic segmentation head that processes features of different scales with specialized modules for coherent feature refinement. Finally, our proposed panoptic fusion module adaptively fuses logits from each of the heads to yield the panoptic segmentation output. The Robust Vision Challenge 2020 benchmarking results show that our model is ranked #1 on Microsoft COCO, VIPER and WildDash, and is ranked #2 on Cityscapes and Mapillary Vistas, thereby achieving the overall rank #1 for the panoptic segmentation task.
In this technical report, we briefly introduce the solution of our team TAL-ai for (Semi-) supervised Face detection in the low light condition in UG2+ Challenge in CVPR 2021. By conducting several experiments with popular image enhancement methods and image transfer methods, we pulled the low light image and the normal image to a more closer domain. And it is observed that using these data to training can achieve better performance. We also adapt several popular object detection frameworks, e.g., DetectoRS, Cascade-RCNN, and large backbone like Swin-transformer. Finally, we ensemble several models which achieved mAP 74.89 on the testing set, ranking 1st on the final leaderboard.
In this technical report, we present our 1st place solution for the ICDAR 2021 competition on mathematical formula detection (MFD). The MFD task has three key challenges including a large scale span, large variation of the ratio between height and width, and rich character set and mathematical expressions. Considering these challenges, we used Generalized Focal Loss (GFL), an anchor-free method, instead of the anchor-based method, and prove the Adaptive Training Sampling Strategy (ATSS) and proper Feature Pyramid Network (FPN) can well solve the important issue of scale variation. Meanwhile, we also found some tricks, e.g., Deformable Convolution Network (DCN), SyncBN, and Weighted Box Fusion (WBF), were effective in MFD task. Our proposed method ranked 1st in the final 15 teams.
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and use them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.