No Arabic abstract
Optical phase change materials (O-PCMs), a unique group of materials featuring drastic optical property contrast upon solid-state phase transition, have found widespread adoption in photonic switches and routers, reconfigurable meta-optics, reflective display, and optical neuromorphic computers. Current phase change materials, such as Ge-Sb-Te (GST), exhibit large contrast of both refractive index (delta n) and optical loss (delta k), simultaneously. The coupling of both optical properties fundamentally limits the function and performance of many potential applications. In this article, we introduce a new class of O-PCMs, Ge-Sb-Se-Te (GSST) which breaks this traditional coupling, as demonstrated with an optical figure of merit improvement of more than two orders of magnitude. The first-principle computationally optimized alloy, Ge2Sb2Se4Te1, combines broadband low optical loss (1-18.5 micron), large optical contrast (delta n = 2.0), and significantly improved glass forming ability, enabling an entirely new field of infrared and thermal photonic devices. We further leverage the material to demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio, as well as an electrically addressed, microsecond switched pixel level spatial light modulator, thereby validating its promise as a platform material for scalable nonvolatile photonics.
Energy-efficient programmable photonic integrated circuits (PICs) are the cornerstone of on-chip classical and quantum optical technologies. Optical phase shifters constitute the fundamental building blocks which enable these programmable PICs. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off-they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a novel phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb$_{2}$Se$_{3}$, an ultralow-loss phase change material. A zero-static power and electrically-driven phase shifter was realized on a foundry-processed silicon-on-insulator platform, featuring record phase modulation up to 0.09 $pi$/$mu$m and a low insertion loss of 0.3 dB/$pi$. We further pioneered a one-step partial amorphization scheme to enhance the speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices were demonstrated based on the ultracompact PCM phase shifter.
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe to be the first electrically reconfigurable nonvolatile metasurfaces based on O-PCMs. The O-PCM alloy used in the devices, Ge2Sb2Se4Te1 (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss, and a large reversible switching volume, enabling significantly enhanced light-matter interactions within the active O-PCM medium. Capitalizing on these favorable attributes, we demonstrated continuously tunable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.
Polaritons formed by the coupling of light and material excitations such as plasmons, phonons, or excitons enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. Recently, significant interest has been attracted by polaritons in van der Waals materials, which could lead to applications in sensing, integrated photonic circuits and detectors. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which allow it to interact with the surrounding dielectric environment comprising the low-loss phase change material, Ge$_3$Sb$_2$Te$_6$ (GST). We demonstrate waveguides which confine polaritons in a 1D geometry, and refractive optical elements such as lenses and prisms for phonon polaritons in hBN, which we characterize using scanning near field optical microscopy. Furthermore, we demonstrate metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. Our method, due to its sub-diffraction and planar nature, will enable the realization of programmable miniaturized integrated optoelectronic devices, and will lay the foundation for on-demand biosensors.
Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PIC). An ideal integrated optical isolator for PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-diverse operation, and be compatible with multiple materials platforms. Despite significant progress, the optical isolators reported so far do not meet all these requirements. In this article we present monolithically integrated broadband magneto-optical isolators on silicon and silicon nitride (SiN) platforms operating for both TE and TM modes with record high performances, fulfilling all the essential characteristics for PIC applications. In particular, we demonstrate fully-TE broadband isolators by depositing high quality magneto-optical garnet thin films on the sidewalls of Si and SiN waveguides, a critical result for applications in TE-polarized on-chip lasers and amplifiers. This work demonstrates monolithic integration of high performance optical isolators on chip for polarization-diverse silicon photonic systems, enabling new pathways to impart nonreciprocal photonic functionality to a variety of integrated photonic devices.
The functionalities of a wide range of optical and opto-electronic devices are based on resonance effects and active tuning of the amplitude and wavelength response is often essential. Plasmonic nanostructures are an efficient way to create optical resonances, a prominent example is the extraordinary optical transmission (EOT) through arrays of nanoholes patterned in a metallic film. Tuning of resonances by heating, applying electrical or optical signals has proven to be more elusive, due to the lack of materials that can induce modulation over a broad spectral range and/or at high speeds. Here we show that nanopatterned metals combined with phase change materials (PCMs) can overcome this limitation due to the large change in optical constants which can be induced thermally or on an ultrafast timescale. We demonstrate resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - by combining properly designed Au EOT nanostructures with Ge2Sb2Te5 (GST). Moreover, we show, through pump probe measurements, repeatable and reversible, large amplitude modulations in the resonances, especially at telecommunication wavelengths, over ps time scales and at powers far below those needed to produce a permanent phase transition. Our findings open a pathway to the design of hybrid metal PCM nanostructures with ultrafast and widely tuneable resonance responses, which hold potential impact on active nanophotonic devices such as tuneable optical filters, smart windows, biosensors and reconfigurable memories.