Do you want to publish a course? Click here

Modeling Melodic Feature Dependency with Modularized Variational Auto-Encoder

312   0   0.0 ( 0 )
 Added by Shang-Yu Su
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Automatic melody generation has been a long-time aspiration for both AI researchers and musicians. However, learning to generate euphonious melodies has turned out to be highly challenging. This paper introduces 1) a new variant of variational autoencoder (VAE), where the model structure is designed in a modularized manner in order to model polyphonic and dynamic music with domain knowledge, and 2) a hierarchical encoding/decoding strategy, which explicitly models the dependency between melodic features. The proposed framework is capable of generating distinct melodies that sounds natural, and the experiments for evaluating generated music clips show that the proposed model outperforms the baselines in human evaluation.



rate research

Read More

Variational Auto-Encoders (VAEs) have become very popular techniques to perform inference and learning in latent variable models as they allow us to leverage the rich representational power of neural networks to obtain flexible approximations of the posterior of latent variables as well as tight evidence lower bounds (ELBOs). Combined with stochastic variational inference, this provides a methodology scaling to large datasets. However, for this methodology to be practically efficient, it is necessary to obtain low-variance unbiased estimators of the ELBO and its gradients with respect to the parameters of interest. While the use of Markov chain Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo (HMC) has been previously suggested to achieve this [23, 26], the proposed methods require specifying reverse kernels which have a large impact on performance. Additionally, the resulting unbiased estimator of the ELBO for most MCMC kernels is typically not amenable to the reparameterization trick. We show here how to optimally select reverse kernels in this setting and, by building upon Hamiltonian Importance Sampling (HIS) [17], we obtain a scheme that provides low-variance unbiased estimators of the ELBO and its gradients using the reparameterization trick. This allows us to develop a Hamiltonian Variational Auto-Encoder (HVAE). This method can be reinterpreted as a target-informed normalizing flow [20] which, within our context, only requires a few evaluations of the gradient of the sampled likelihood and trivial Jacobian calculations at each iteration.
To act and plan in complex environments, we posit that agents should have a mental simulator of the world with three characteristics: (a) it should build an abstract state representing the condition of the world; (b) it should form a belief which represents uncertainty on the world; (c) it should go beyond simple step-by-step simulation, and exhibit temporal abstraction. Motivated by the absence of a model satisfying all these requirements, we propose TD-VAE, a generative sequence model that learns representations containing explicit beliefs about states several steps into the future, and that can be rolled out directly without single-step transitions. TD-VAE is trained on pairs of temporally separated time points, using an analogue of temporal difference learning used in reinforcement learning.
Due to the intractable partition function, training energy-based models (EBMs) by maximum likelihood requires Markov chain Monte Carlo (MCMC) sampling to approximate the gradient of the Kullback-Leibler divergence between data and model distributions. However, it is non-trivial to sample from an EBM because of the difficulty of mixing between modes. In this paper, we propose to learn a variational auto-encoder (VAE) to initialize the finite-step MCMC, such as Langevin dynamics that is derived from the energy function, for efficient amortized sampling of the EBM. With these amortized MCMC samples, the EBM can be trained by maximum likelihood, which follows an analysis by synthesis scheme; while the variational auto-encoder learns from these MCMC samples via variational Bayes. We call this joint training algorithm the variational MCMC teaching, in which the VAE chases the EBM toward data distribution. We interpret the learning algorithm as a dynamic alternating projection in the context of information geometry. Our proposed models can generate samples comparable to GANs and EBMs. Additionally, we demonstrate that our models can learn effective probabilistic distribution toward supervised conditional learning experiments.
We propose a flexible framework for spectral conversion (SC) that facilitates training with unaligned corpora. Many SC frameworks require parallel corpora, phonetic alignments, or explicit frame-wise correspondence for learning conversion functions or for synthesizing a target spectrum with the aid of alignments. However, these requirements gravely limit the scope of practical applications of SC due to scarcity or even unavailability of parallel corpora. We propose an SC framework based on variational auto-encoder which enables us to exploit non-parallel corpora. The framework comprises an encoder that learns speaker-independent phonetic representations and a decoder that learns to reconstruct the designated speaker. It removes the requirement of parallel corpora or phonetic alignments to train a spectral conversion system. We report objective and subjective evaluations to validate our proposed method and compare it to SC methods that have access to aligned corpora.
The increasing amount of data in astronomy provides great challenges for machine learning research. Previously, supervised learning methods achieved satisfactory recognition accuracy for the star-galaxy classification task, based on manually labeled data set. In this work, we propose a novel unsupervised approach for the star-galaxy recognition task, namely Cascade Variational Auto-Encoder (CasVAE). Our empirical results show our method outperforms the baseline model in both accuracy and stability.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا