No Arabic abstract
We study the resolvent for nontrapping obstacles on manifolds with Euclidean ends. It is well known that for such manifolds, the outgoing resolvent satisfies $|chi R(k) chi|_{L^2to L^2}leq C{k}^{-1}$ for ${k}>1$, but the constant $C$ has been little studied. We show that, for high frequencies, the constant is bounded above by $2/pi$ times the length of the longest generalized bicharacteristic of $|xi|_g^2-1$ remaining in the support of $chi.$ We show that this estimate is optimal in the case of manifolds without boundary. We then explore the implications of this result for the numerical analysis of the Helmholtz equation.
We establish new results concerning the existence of extremisers for a broad class of smoothing estimates of the form $|psi(| abla|) exp(itphi(| abla|)f |_{L^2(w)} leq C|f|_{L^2}$, where the weight $w$ is radial and depends only on the spatial variable; such a smoothing estimate is of course equivalent to the $L^2$-boundedness of a certain oscillatory integral operator $S$ depending on $(w,psi,phi)$. Furthermore, when $w$ is homogeneous, and for certain $(psi,phi)$, we provide an explicit spectral decomposition of $S^*S$ and consequently recover an explicit formula for the optimal constant $C$ and a characterisation of extremisers. In certain well-studied cases when $w$ is inhomogeneous, we obtain new expressions for the optimal constant.
We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
In this paper we show how to obtain decay estimates for the damped wave equation on a compact manifold without geometric control via knowledge of the dynamics near the un-damped set. We show that if replacing the damping term with a higher-order emph{complex absorbing potential} gives an operator enjoying polynomial resolvent bounds on the real axis, then the resolvent associated to our damped problem enjoys bounds of the same order. It is known that the necessary estimates with complex absorbing potential can also be obtained via gluing from estimates for corresponding non-compact models.
We consider the generalized Benjamin-Ono (gBO) equation on the real line, $ u_t + partial_x (-mathcal H u_{x} + tfrac1{m} u^m) = 0, x in mathbb R, m = 2,3,4,5$, and perform numerical study of its solutions. We first compute the ground state solution to $-Q -mathcal H Q^prime +frac1{m} Q^m = 0$ via Petviashvilis iteration method. We then investigate the behavior of solutions in the Benjamin-Ono ($m=2$) equation for initial data with different decay rates and show decoupling of the solution into a soliton and radiation, thus, providing confirmation to the soliton resolution conjecture in that equation. In the mBO equation ($m=3$), which is $L^2$-critical, we investigate solutions close to the ground state mass, and, in particular, we observe the formation of stable blow-up above it. Finally, we focus on the $L^2$-supercritical gBO equation with $m=4,5$. In that case we investigate the global vs finite time existence of solutions, and give numerical confirmation for the dichotomy conjecture, in particular, exhibiting blow-up phenomena in the supercritical setting.