Do you want to publish a course? Click here

Correlated model atom in a time-dependent external field: Sign effect in the energy shift

140   0   0.0 ( 0 )
 Added by I\\~nigo Aldazabal
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this contribution we determine the exact solution for the ground-state wave function of a two-particle correlated model atom with harmonic interactions. From that wave function, the nonidempotent one-particle reduced density matrix is deduced. Its diagonal gives the exact probability density, the basic variable of Density-Functional Theory. The one-matrix is directly decomposed, in a point-wise manner, in terms of natural orbitals and their occupation numbers, i.e., in terms of its eigenvalues and normalized eigenfunctions. The exact informations are used to fix three, approximate, independent-particle models. Next, a time-dependent external field of finite duration is added to the exact and approximate Hamiltonians and the resulting Cauchy problem is solved. The impact of the external field is investigated by calculating the energy shift generated by that time-dependent field. It is found that the nonperturbative energy shift reflects the sign of the driving field. The exact probability density and current are used, as inputs, to investigate the capability of a formally exact independent-particle modeling in time-dependent DFT as well. The results for the observable energy shift are analyzed by using realistic estimations for the parameters of the two-particle target and the external field. A comparison with the experimental prediction on the sign-dependent energy loss of swift protons and antiprotons in a gaseous He target is made.



rate research

Read More

73 - Xinyuan You , J. A. Sauls , 2019
Circuit quantization links a physical circuit to its corresponding quantum Hamiltonian. The standard quantization procedure generally assumes any external magnetic flux to be static. Time dependence naturally arises, however, when flux is modulated or when flux noise is considered. In this case, application of the existing quantization procedure can lead to inconsistencies. To resolve these, we generalize circuit quantization to incorporate time-dependent external flux.
The dynamics of a probe D7-brane in an asymptotically AdS-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N = 2 super Yang-Milles theory. If the final temperature of the system is large enough, the probe D7-brane will dynamically cross the horizon (black hole embedding). By turning on the external magnetic field and raising it sufficiently, the final embedding of the corresponding D7-brane changes to Minkowski embedding. In the field theory side, this means that the mesons which melt due to the raise in the temperature, will form bound states again by applying an external magnetic field. We will also show that the evolution of the system to its final equilibrium state is postponed due to the presence of the magnetic field.
We investigate the system constituted by a polarizable atom near a nanosphere under the influence of an external electrostatic field, showing that the attractive dispersive force between them can be overcome by the electrostatic interaction. Therefore, in addition to the advantageous possibility of actively tuning the resultant force with an external agent without the requirement of physical contact, this force may also become repulsive. We analyze this situation in different physical regimes of distance and explore the interaction of different atoms with both metallic and dielectric spheres, discussing which cases are easier to control. Furthermore, our results reveal that these repulsive forces can be achieved with feasible field intensities in the laboratory.
Integrals of motion and statistical properties of quantized electromagnetic field (e.-m. field) in time-dependent linear dielectric and conductive media are considered, using Choi-Yeon quantization, based on Caldirola-Kanai type Hamiltonian. Eigenstates of quadratic and linear invariants are constructed, the solutions being expressed in terms of a complex parametric function that obeys classical oscillator equation with time-varying frequency. The time evolutions of initial Glauber coherent states and Fock states are considered. The medium conductivity and the time-dependent electric permeability are shown to generate squeezing and non-vanishing covariances. In the time-evolved coherent and squeezed states all the second statistical moments of the electric and magnetic field components are calculated and shown to mminimize the Robertson-Schrodinger uncertainty relation.
We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in EIT storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance, and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا