Effect of Landau damping on ion acoustic solitary waves in a multi-species collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons


Abstract in English

A Korteweg-de Vries (KdV) equation including the effect of Landau damping is derived to study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized plasma consisting of warm adiabatic ions and two different species of electrons at different temperatures. The hotter energetic electron species follows the nonthermal velocity distribution of Cairns et al. [Geophys. Res. Lett. 22, 2709 (1995)] whereas the cooler electron species obeys the Boltzmann distribution. It is found that the coefficient of the nonlinear term of this KdV like evolution equation vanishes along different family of curves in different parameter planes. In this context, a modified KdV (MKdV) equation including the effect of Landau damping effectively describes the nonlinear behaviour of ion acoustic waves. It has also been observed that the coefficients of the nonlinear terms of the KdV and MKdV like evolution equations including the effect of Landau damping, are simultaneously equal to zero along a family of curves in the parameter plane. In this situation, we have derived a further modified KdV (FMKdV) equation including the effect of Landau damping to describe the nonlinear behaviour of ion acoustic waves. In fact, different modified KdV like evolution equations including the effect of Landau damping have been derived to describe the nonlinear behaviour of ion acoustic waves in different region of parameter space. The method of Ott & Sudan [Phys. Fluids 12, 2388 (1969)] has been applied to obtain the solitary wave solution of the evolution equation having the nonlinear term $(phi^{(1)})^{r}frac{partial phi^{(1)}}{partial xi}$, where $phi^{(1)}$ is the first order perturbed electrostatic potential and $r =1,2,3$. We have found that the amplitude of the solitary wave solution decreases with time for all $r =1,2,3$.

Download