Substrate induced proximity effect in superconducting niobium nanofilms


Abstract in English

Structural and superconducting properties of high quality Niobium nanofilms with different thicknesses are investigated on silicon oxide and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, specially in films deposited on a SiO$_2$ substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects.

Download