Do you want to publish a course? Click here

Dispersion relation of the collective excitations in a resonantly driven polariton fluid

392   0   0.0 ( 0 )
 Added by Maxime Richard
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exciton-polaritons in semiconductor microcavities constitute the archetypal realization of a quantum fluid of light. Under coherent optical drive, remarkable effects such as superfluidity, dark solitons or the nucleation of hydrodynamic vortices have been observed. These phenomena can be all understood as a specific manifestation of collective excitations forming on top of the polariton condensate. In this work, we performed a Brillouin scattering experiment to measure their dispersion relation $omega(mathbf{k})$ directly. The result, such as a speed of sound which is apparently twice too low, cannot be explained upon considering the polariton condensate alone. In a combined theoretical and experimental analysis, we demonstrate that the presence of a reservoir of long-lived excitons interacting with polaritons has a dramatic influence on the nature and characteristic of the quantum fluid, and that it explains our measurement quantitatively. This work clarifies the role of such a reservoir in the different polariton hydrodynamics phenomena occurring under resonant optical drive. It also provides an unambiguous tool to determine the condensate-to-reservoir fraction in the quantum fluid, and sets an accurate framework to approach novel ideas for polariton-based quantum-optical applications.



rate research

Read More

We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra in three different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.
85 - Simon Pigeon 2020
We study the necessary condition under which a resonantly driven exciton polariton superfluid flowing against an obstacle can generate turbulence. The value of the critical velocity is well estimated by the transition from elliptic to hyperbolic of an operator following ideas developed by Frisch, Pomeau, Rica for a superfluid flow around an obstacle, though the nature of equations governing the polariton superfluid is quite different. We find analytical estimates depending on the pump amplitude and on the pump energy detuning, quite consistent with our numerical computations.
We propose a pump-probe set-up to analyse the properties of the collective excitation spectrum of a spinor polariton fluid. By using a linear response approximation scheme, we carry on a complete classification of all excitation spectra, as well as their intrinsic degree of polarisation, in terms of two experimentally tunable parameters only, the mean-field polarisation angle and a rescaled pump detuning. We evaluate the system response to the external probe, and show that the transmitted light can undergo a spin rotation along the dispersion for spectra that we classify as diffusive-like. We show that in this case, the spin flip predicted along the dispersion is enhanced when the system is close to a parametrically amplified instability.
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent TE-TM splitting of the optical modes, the excitations dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the inter- and intra-spin polariton interaction constants and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.
We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا