No Arabic abstract
We construct explicit examples of geodesics in the mapping class group and show that the shadow of a geodesic in mapping class group to the curve graph does not have to be a quasi-geodesic. We also show that the quasi-axis of a pseudo-Anosov element of the mapping class group may not have the strong contractibility property. Specifically, we show that, after choosing a generating set carefully, one can find a pseudo-Anosov homeomorphism f, a sequence of points w_k and a sequence of radii r_k so that the ball B(w_k, r_k) is disjoint from a quasi-axis a of f, but for any projection map from mapping class group to a, the diameter of the image of B(w_k, r_k) grows like log(r_k).
This is an addendum to arXiv: 0810.5376. We show, using our methods and an auxiliary result of Bestvina-Bromberg-Fujiwara, that a finitely generated group with infinitely many pairwise non-conjugate homomorphisms to a mapping class group virtually acts non-trivially on an $R$-tree, and, if it is finitely presented, it virtually acts non-trivially on a simplicial tree
Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ has positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
This article is dedicated to the study of asymptotically rigid mapping class groups of infinitely-punctured surfaces obtained by thickening planar trees. Such groups include the braided Ptolemy-Thompson groups $T^sharp,T^ast$ introduced by Funar and Kapoudjian, and the braided Houghton groups $mathrm{br}H_n$ introduced by Degenhardt. We present an elementary construction of a contractible cube complex, on which these groups act with cube-stabilisers isomorphic to finite extensions of braid groups. As an application, we prove Funar-Kapoudjians and Degenhardts conjectures by showing that $T^sharp,T^ast$ are of type $F_infty$ and that $mathrm{br}H_n$ is of type $F_{n-1}$ but not of type $F_n$.
We show that if $G_1$ and $G_2$ are non-solvable groups, then no $C^{1,tau}$ action of $(G_1times G_2)*mathbb{Z}$ on $S^1$ is faithful for $tau>0$. As a corollary, if $S$ is an orientable surface of complexity at least three then the critical regularity of an arbitrary finite index subgroup of the mapping class group $mathrm{Mod}(S)$ with respect to the circle is at most one, thus strengthening a result of the first two authors with Baik.
We prove that Morse local-to-global groups grow exponentially faster than their infinite index stable subgroups. This generalizes a result of Dahmani, Futer, and Wise in the context of quasi-convex subgroups of hyperbolic groups to a broad class of groups that contains the mapping class group, CAT(0) groups, and the fundamental groups of closed 3-manifolds. To accomplish this, we develop a theory of automatic structures on Morse geodesics in Morse local-to-global groups. Other applications of these automatic structures include a description of stable subgroups in terms of regular languages, rationality of the growth of stable subgroups, density in the Morse boundary of the attracting fixed points of Morse elements, and containment of the Morse boundary inside the limit set of any infinite normal subgroup.