Do you want to publish a course? Click here

QKD from a microsatellite: the SOTA experience

48   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transmission and reception of polarized quantum-limited signals from space is of capital interest for a variety of fundamental-physics experiments and quantum-communication protocols. Specifically, Quantum Key Distribution (QKD) deals with the problem of distributing unconditionally-secure cryptographic keys between two parties. Enabling this technology from space is a critical step for developing a truly-secure global communication network. The National Institute of Information and Communications Technology (NICT, Japan) performed the first successful measurement on the ground of a quantum-limited signal from a satellite in experiments carried out on early August in 2016. The SOTA (Small Optical TrAnsponder) lasercom terminal onboard the LEO satellite SOCRATES (Space Optical Communications Research Advanced Technology Satellite) was utilized for this purpose. Two non-orthogonally polarized signals in the ~800-nm band and modulated at 10 MHz were transmitted by SOTA and received in the single-photon regime by using a 1-m Cassegrain telescope on a ground station located in an urban area of Tokyo (Japan). In these experiments, after compensating the Doppler effect induced by the fast motion of the satellite, a QKD-enabling QBER (Quantum Bit Error Rate) below 5% was measured with estimated key rates in the order of several Kbit/s, proving the feasibility of quantum communications in a real scenario from space for the first time.



rate research

Read More

Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.
132 - Valerio Scarani 2010
I review the ideas and main results in the derivation of security bounds in quantum key distribution for keys of finite length. In particular, all the detailed studies on specific protocols and implementations indicate that no secret key can be extracted if the number of processed signals per run is smaller than 10^5-10^6. I show how these numbers can be recovered from very basic estimates.
We propose a method for reconfiguring a relay node for polarization encoded quantum key distribution (QKD) networks. The relay can be switched between trusted and untrusted modes to adapt to different network conditions, relay distances, and security requirements. This not only extends the distance over which a QKD network operates but also enables point-to-multipoint (P2MP) network topologies. The proposed architecture centralizes the expensive and delicate single-photon detectors (SPDs) at the relay node with eased maintenance and cooling while simplifying each user node so that it only needs commercially available devices for low-cost qubit preparation.
The distributed absorption of photons in photodiodes induces an excess noise in continuous-wave photodetection above the transit-time roll-off frequency. We show that it can be treated as a frequency-dependent excess optical loss in homodyne detection. This places a limit on the bandwidth of high-accuracy homodyne detection, even if an ideal photodetector circuit is available. We experimentally verify the excess loss in two ways; a comparison of signal gain and shot-noise gain of one-port homodyne detection, and a balanced homodyne detection of squeezed light at 500 MHz sideband. These results agree with an analytic expression we develop, where the randomness of the photoabsorption is directly modeled by an intrusion of vacuum field. At 500 MHz, we estimate the excess loss at 14% for a Si-PIN photodiode with 860 nm incident light, while the numerical simulation predicts much smaller excess loss in InGaAs photodiodes with 1550 nm light.
Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا