Do you want to publish a course? Click here

High Open Circuit Voltages in pin-Type Perovskite Solar Cells through Strontium Addition

70   0   0.0 ( 0 )
 Added by Pietro Caprioglio
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The incorporation of even small amounts of strontium (Sr) into lead-based quadruple cation hybrid perovskite solar cells results in a systematic increase of the open circuit voltage (Voc) in pin-type perovskite solar cells. We demonstrate via transient and absolute photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer and specifically at the perovskite/C60 interface. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C60 electron-transporting layer. The resulting solar cells exhibited a Voc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, bringing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3%. Our results demonstrate very high Voc values and efficiencies in Sr-containing quadruple cation perovskite pin solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer.



rate research

Read More

Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
Engineering the energetics of perovskite photovoltaic devices through the deliberate introduction of dipoles to control the built-in potential of the devices offers the opportunity to enhance their performance without the need to modify the active layer itself. In this work, we demonstrate how the incorporation of molecular dipoles into the bathocuproine (BCP) hole-blocking layer of inverted perovskite solar cells improves the device open-circuit voltage (VOC) and consequently, its performance. We explore a series of four thiaazulenic derivatives that exhibit increasing dipole moments and demonstrate that these molecules can be introduced into the solution-processed BCP layer to effectively increase the built-in potential within the device, without altering any of the other device layers. As a result the VOC of the devices is enhanced by up to 130 mV with larger dipoles resulting in higher VOCs. To investigate the limitations of this approach, we employ numerical device simulations that demonstrate that the highest dipole derivatives used in this work eliminate all limitations on the VOC stemming from the built-in potential of the device.
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated hot carriers before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
Hybrid organic-inorganic halide perovskite solar cells have emerged as leading candidates for third-generation photovoltaic technology. Despite the rapid improvement in power conversion efficiency (PCE) for perovskite solar cells in recent years, the low-frequency carrier kinetics that underlie practical roadblocks such as hysteresis and degradation remain relatively poorly understood. In an effort to bridge this knowledge gap, we perform here correlated low-frequency noise (LFN) and impedance spectroscopy (IS) characterization that elucidates carrier kinetics in operating perovskite solar cells. Specifically, we focus on planar cell geometries with a SnO2 electron transport layer and two different hole transport layers, namely, poly(triarylamine) (PTAA) and Spiro-OMeTAD. PTAA and Sprio-OMeTAD cells with moderate PCEs of 5 to 12 percent possess a Lorentzian feature at 200 Hz in LFN measurements that corresponds to a crossover from electrode to dielectric polarization. In comparison, Spiro-OMeTAD cells with high PCEs (15 percent) show four orders of magnitude lower LFN amplitude and are accompanied by a cyclostationary process. Through a systematic study of more than a dozen solar cells, we establish a correlation with noise amplitude, power conversion efficiency, and fill factor. Overall, this work establishes correlated LFN and IS as an effective methodology for quantifying low frequency carrier kinetics in perovskite solar cells, thereby providing new physical insights that can rationally guide ongoing efforts to improve device performance, reproducibility, and stability.
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devices in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3-xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا