No Arabic abstract
A semiconductor tracker for muon scattering tomography is presented. The tracker contains silicon strip sensors with an $80,mu$m pitch, precision mechanics and integrated cooling. The electronic readout of the sensors is performed by a scalable, inexpensive, flexible, FPGA-based system, which is demonstrated to achieve an event rate of $30,$kHz. The tracker performance is compared with a Geant4 simulation. A scattering angle resolution compatible with $1.5,$mrad at the $4,$GeV average cosmic ray muon energy is demonstrated. Images of plastic, iron and lead samples are obtained using an Angle Statistics Reconstruction algorithm. The images demonstrate good contrast between low and high atomic number materials.
A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. The maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography simulation and measurement. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using eleven detection positions for portable muography detectors to image infrastructure scale targets.
Cosmic ray muon has strong penetrating power and no ionizing radiation hazards, which make cosmic ray muon an ideal probe to detect the special nuclear materials (SNM). However, the existing muon tomography experiments have the disadvantages of long imaging time and poor imaging accuracy, due to the low event rate of muons and small interaction cross section between muons and material nucleus. To optimize the imaging quality and imaging time, high spatial resolution muon tomography facility should be investigated more deeply. Micromegas with its high spatial resolution and large detection area is one of the suitable detectors for the muon tomography facility. In this paper, a high spatial muon tomography prototype was presented. The Micromegas detector was based on thermal bonding technique, which was easy to manufacture and can achieve good performance. A novel multiplexing method base on position encoding was introduced in this research to reduce the channels in an order of magnitude. Then, this paper carried out the research of a general and scalable muon imaging readout system, which employed a discrete architecture of front-end and back-end electronics and can be adapted to different scales of muon tomography experiments. Finally, a tomography prototype system was designed and implemented, including eight Micromegas detectors, four front-end electronics cards and a data acquisition board. Test results showed that this prototype can image objects with 2cm size and distinguish different materials.
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
In order to test the performance of detector/prototype in environment of laboratory, we design and build a larger area ($90times52$ $cm^2$) test platform of cosmic ray based on well-designed Multi-gap Resistive Plate Chamber (MRPC) with an excellent time resolution and a high detection efficiency for the minimum ionizing particles (MIPs). The time resolution of the MRPC module used is tested to be ~80 ps, and the position resolution along the strip is ~5 mm, while the position resolution perpendicular to the strip is ~12.7 mm. The platform constructed by four MRPC modules can be functional for tracking the cosmic rays with a spatial resolution ~6.3 mm, and provide a reference time ~40 ps.
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a $sim$ 1 m $times$ 1 m $times$ 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.