No Arabic abstract
The neutron density distributions and neutron skin thicknesses in $^{40,48}$Ca are determined from the angular distributions of the cross sections and analyzing powers of polarized proton elastic scattering at $E_p = 295$ MeV. Based on the framework of the relativistic impulse approximation with the density-dependent effective $NN$ interaction, the experimental data is successfully analyzed, providing precise information of neutron and proton density profiles of $^{40,48}$Ca with small uncertainties. The extracted neutron and proton density distributions give neutron skin thicknesses in $^{40,48}$Ca for $-0.010^{+0.022}_{-0.024}$ fm and $0.168^{+0.025}_{-0.028}$ fm, respectively. The results of the density profiles and the neutron skin thickness in $^{48}$Ca are directly compared with the {it ab initio} coupled-cluster calculations with interactions derived from chiral effective field theory, as well as relativistic and non-relativistic energy density functional theories.
Cross sections and analyzing powers for proton elastic scattering from $^{116,118,120,122,124}$Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm$^{-1}$ to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperature. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
{bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{rm skin}^{208}=0.25$fm from the central values of $sigma_{rm R}$ of p+$^{208}$Pb scattering in $E_{rm in}=40-81$MeV. The high-resolution $E1$ polarizability experiment ($E1$pE) yields $r_{rm skin}^{48}(E1{rm pE}) =0.14-0.20$fm. The data on $sigma_{rm R}$ are available as a function of $E_{rm in}$ for $p$+$^{48}$Ca scattering. {bf Aim:} Our aim is to determine $r_{rm skin}^{48}$ from the central values of $sigma_{rm R}$ for $p$+$^{48}$Ca scattering by using the folding model. {bf Results:} As for $^{48}$Ca, we determine $r_n(E1{rm pE})=3.56$fm from the central value 0.17fm of $r_{rm skin}^{48}(E1{rm pE})$ and $r_p({rm EXP})=3.385$fm of electron scattering, and evaluate $r_m(E1{rm pE})=3.485$fm from the $r_n(E1{rm pE})$ and the $r_p({rm EXP})$ of electron scattering. The folding model with GHFB+AMP densities reproduces $sigma_{rm R}$ in $23 leq E_{rm in} leq 25.3$ MeV in one-$sigma$ level, but slightly overestimates the central values of $sigma_{rm R}$ there. In $23 leq E_{rm in} leq 25.3$MeV, the small deviation allows us to scale the GHFB+AMP densities to the central values of $r_p({rm EXP})$ and $r_n(E1{rm pE})$. The $sigma_{rm R}(E1{rm pE})$ obtained with the scaled densities almost reproduce the central values of $sigma_{rm R}$ when $E_{rm in}=23-25.3$MeV, so that the $sigma_{rm R}({rm GHFB+AMP})$ and the $sigma_{rm R}(E1{rm pE})$ are in 1-$sigma$ of $sigma_{rm R}$ there. In $E_{rm in}=23-25.3$MeV, we determine the $r_{m}({rm EXP})$ from the central values of $sigma_{rm R}$ and take the average for the $r_{m}({rm EXP})$. The averaged value is $r_{m}({rm EXP})=3.471$fm. Eventually, we obtain $r_{rm skin}^{48}({rm EXP})=0.146$fm from $r_{m}({rm EXP})=3.471$fm and $r_p({rm EXP})=3.385$fm.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.