We consider an isolated point defect embedded in a homogeneous crystalline solid. We show that, in the harmonic approximation, a periodic supercell approximation of the formation free energy as well as of the transition rate between two stable configurations converge as the cell size tends to infinity. We characterise the limits and establish sharp convergence rates. Both cases can be reduced to a careful renormalisation analysis of the vibrational entropy difference, which is achieved by identifying an underlying spatial decomposition.