Do you want to publish a course? Click here

Complete IRAC mapping of the CFHTLS-DEEP, MUSYC AND NMBS-II FIELDS

63   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IRAC mapping of the NMBS-II fields program is an imaging survey at 3.6 and 4.5$mu$m with the Spitzer Infrared Array Camera (IRAC). The observations cover three Canada-France-Hawaii Telescope Legacy Survey Deep (CFHTLS-D) fields, including one also imaged by AEGIS, and two MUSYC fields. These are then combined with archival data from all previous programs into deep mosaics. The resulting imaging covers a combined area of about 3 $deg^2$, with at least $sim$2 hr integration time for each field. In this work, we present our data reduction techniques and document the resulting coverage maps at 3.6 and 4.5$mu$m. All of the images are W-registered to the reference image, which is either the z-band stack image of the 25% best seeing images from the CFHTLS-D for CFHTLS-D1, CFHTLS-D3, and CFHTLS-D4, or the K-band images obtained at the Blanco 4-m telescope at CTIO for MUSYC1030 and MUSYC1255. We make all images and coverage maps described herein publicly available via the Spitzer Science Center.



rate research

Read More

We present the discovery of three protoclusters at $zsim3mathrm{-}4$ with spectroscopic confirmation in the Canada-France-Hawaii Telescope (CFHT) Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of $zsim3mathrm{-}6$ Lyman break galaxies and identify 21 protocluster candidates from regions that are overdense at more than $4sigma$ overdensity significance. Based on cosmological simulations, it is expected that more than $76%$ of these candidates will evolve into a galaxy cluster of at least a halo mass of $10^{14},mathrm{M_odot}$ at $z=0$. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, KeckII/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at $z=3mathrm{-}4$ with more than five members spectroscopically identified, and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at $zsim5mathrm{-}6$ require more spectroscopic follow-up in order to be conclusive. A $z=3.67$ protocluster, which has eleven spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region ($<0.5,mathrm{physical>Mpc}$) and an outskirts region ($sim1.0,mathrm{physical>Mpc}$). The Ly$alpha$ equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at $zsim4$ along with the growth of the protocluster structure.
Adami et al. (2010) have detected several cluster candidates at z>0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey, based on photometric redshifts. We focus here on two of them, located in the D3 field: D3-6 and D3-43. We have obtained spectroscopy with Gemini/GMOS and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Cluster D3-6 is found to be a single structure of 8 spectroscopically confirmed members at an average redshift z=0.607, with a velocity dispersion of 423 km/s. It appears to be a relatively low mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z=0.739. It can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km/s. An explanation to the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3sigma level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. This study shows the power of techniques based on photometric redshifts to detect low to moderately massive structures, even at z~0.75.
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey (S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic variance and also to take advantage of deep coextensive coverage in multiple bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS, S-CANDELS was carried out within five widely separated extragalactic fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon the existing coverage of these fields from the Spitzer Extended Deep Survey (SEDS) by increasing the integration time from 12 hours to a total of 50 hours but within a smaller area, 0.16 square degrees. The additional depth significantly increases the survey completeness at faint magnitudes. This paper describes the S-CANDELS survey design, processing, and publicly-available data products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by S-CANDELS are consistent with models based on known galaxy populations. The increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a significant additional contribution from discrete sources to the diffuse Cosmic Infrared Background (CIB). Thus it remains true that only roughly half of the estimated CIB flux from COBE/DIRBE is resolved.
The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey. Both fields are more than 94% complete to a Galactic extinction corrected R0 = 20.2. Here we describe the redshift survey of the F1 field centered at R.A. = 00h53m25.3s and Decl = 12d33m55s; like F2, the F1 field covers 4 sq deg. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey we compare the mass metallicity relation and the distributions of D4000 as a function of stellar mass and redshift for the two fields. The mass-metallicity relations differ by an insignificant 1.6 sigma. For galaxies in the stellar mass range 1.e10 to 1.e11 MSun, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31-38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the Deep Lens Survey cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together the two fields include 16,055 redshifts for galaxies with R0 <= 20.2 and 20,754 redshifts for galaxies with R <= 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا