Bubble impact on a tilted wall; removing bacteria using bubbles


Abstract in English

Dynamics of a bubble impacting and sliding a tilted surface has been investigated through experimental and computational methods. textcolor{blue}{Specifically, shear stress generated on the wall has been calculated and compared with bacterium adhesion force in order to evaluate a potential sanitization function. In experiments, the bubble-wall interaction has been characterized for several different wall angles. We numerically solved a force balance including buoyancy, hydrodynamic inertia & drag, lift and thin film force to determine the bubble motion. Results showed that the shear stress increases with the wall inclination. The maximum shear stress goes up to more than 300 Pa as a single bubble impacts and scrubs a tilted wall. We found that such a high shear stress is attributed to a rapid change in thin film curvature (flipping bubble/water interface) during the bouncing stage. Later, during the sliding stage, a smaller shear stress up to around 45 Pa is generated for a longer period of time. We also showed that the shear stress generated during the bouncing and sliding stages is high enough to remove bacteria from a surface as a potential method for removing bacteria from tilted surfaces.

Download