This paper presents a new toolbox for MEEG source activity and connectivity estimation: Brain Connectivity Variable Resolution Tomographic Analysis version 1.0 (BC-VARETA 1.0). It relies on the third generation of nonlinear methods for the analysis of resting state MEEG Time Series. Into the state of the art of MEEG analysis, the methodology underlying our tool (BC-VARETA) brings out several assets. First: Constitutes a Bayesian Identification approach of Linear Dynamical Systems in the Frequency Domain, grounded in more consistent models (third generation). Second: Achieves Super-Resolution, through the iterative solution of a Sparse Hermitian Source Graphical Model. Third: Tackles efficiently in High Dimensional and Complex set up the estimation of connectivity. Fourth: Incorporates priors at the connectivity level by penalizing the groups of variables, corresponding to the Gray Matter anatomical segmentation, and including a probability mask of the anatomically plausible connections. Along with the implementation of our method, we include in this toolbox a benchmark for the validation of MEEG source analysis methods, that would serve for the evaluation of sophisticated methodologies (third generation). It incorporates two elements. First: A realistic simulation framework, for the generation of MEEG synthetic data, given an underlying source connectivity structure. Second: Sensitive quality measures that allow for a reliable evaluation of the source activity and connectivity reconstruction performance, based on the Spatial Dispersion and Earth Movers Distance, in both source and connectivity space.