No Arabic abstract
The impact-induced energy transfer and dissipation in granular targets without any confining walls are studied by microgravity experiments. A solid projectile impacts into a granular target at low impact speed ($0.045 leq v_p leq 1.6$~m~s$^{-1}$) in a laboratory drop tower. Granular clusters consisting of soft or hard particles are used as targets. Porous dust agglomerates and glass beads are used for soft and hard particles, respectively. The expansion of the granular target cluster is recorded by a high-speed camera. Using the experimental data, we find that (i)~a simple energy scaling can explain the energy transfer in both, soft- and hard-particles granular targets, (ii)~the kinetic impact energy is isotropically transferred to the target from the impact point, and (iii)~the transferred kinetic energy is $2$~-~$7$% of the projectiles initial kinetic energy. The dissipative-diffusion model of energy transfer can quantitatively explain these behaviors.
The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics mulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. The granular damper behaves like a frictional damper and a linear decay of the amplitude is bserved. This is true even for the simulation model, where friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.
Phase behavior of large three-dimensional complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting/freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.
We experimentally investigate the energy dissipation rate in sinusoidally driven boxes which are partly filled by granular material under conditions of weightlessness. We identify two different modes of granular dynamics, depending on the amplitude of driving, $A$. For intense forcing, A>A_0, the material is found in the collect-and-collide regime where the center of mass of the granulate moves synchronously with the driven container while for weak forcing, A<A_0, the granular material exhibits gas-like behavior. Both regimes correspond to different dissipation mechanisms, leading to different scaling with amplitude and frequency of the excitation and with the mass of the granulate. For the collect-and-collide regime, we explain the dependence on frequency and amplitude of the excitation by means of an effective one-particle model. For both regimes, the results may be collapsed to a single curve characterizing the physics of granular dampers.
The collapse of an inclined cohesive granular layer triggered by a certain perturbation can be a model for not only landslides on Earth but also relaxations of asteroidal surface terrains. To understand such terrain dynamics, we conduct a series of experiments of a solid-projectile impact onto an inclined wet granular layer with various water contents and inclination angles. As a result, we find two types of outcomes: crater formation and collapse. The collapse phase is observed when the inclination angle is close to the maximum stable angle and the impact-induced vibration at the bottom of wet granular layer is sufficiently strong. To explain the collapse condition, we propose a simple block model considering the maximum stable angle, inclination angle, and impact-induced vibrational acceleration. Additionally, the attenuating propagation of the impact-induced vibrational acceleration is estimated on the basis of three-dimensional numerical simulations with discrete element method using dry particles. By combining wet-granular experiments and dry-granular simulations, we find that the impact-induced acceleration attenuates anisotropically in space. With a help of this attenuation form, the physical conditions to induce the collapse can be estimated using the block model.
Planetisimals are thought to be formed from the solid material of a protoplanetary disk by a process of dust aggregation. It is not known how growth proceeds to kilometre sizes, but it has been proposed that water ice beyond the snowline might affect this process. To better understand collisional processes in protoplanetary disks leading to planet formation, the individual low velocity collisions of small ice particles were investigated. The particles were collided under microgravity conditions on a parabolic flight campaign using a purpose-built, cryogenically cooled experimental setup. The setup was capable of colliding pairs of small ice particles (between 4.7 and 10.8 mm in diameter) together at relative collision velocities of between 0.27 and 0.51 m s ^-1 at temperatures between 131 and 160 K. Two types of ice particle were used: ice spheres and irregularly shaped ice fragments. Bouncing was observed in the majority of cases with a few cases of fragmentation. A full range of normalised impact parameters (b/R = 0.0-1.0) was realised with this apparatus. Coefficients of restitution were evenly spread between 0.08 and 0.65 with an average value of 0.36, leading to a minimum of 58% of translational energy being lost in the collision. The range of coefficients of restitution is attributed to the surface roughness of the particles used in the study. Analysis of particle rotation shows that up to 17% of the energy of the particles before the collision was converted into rotational energy. Temperature did not affect the coefficients of restitution over the range studied.