No Arabic abstract
Policy decisions are increasingly dependent on the outcomes of simulations and/or machine learning models. The ability to share and interact with these outcomes is relevant across multiple fields and is especially critical in the disease modeling community where models are often only accessible and workable to the researchers that generate them. This work presents a blockchain-enabled system that establishes a decentralized trust between parties involved in a modeling process. Utilizing the OpenMalaria framework, we demonstrate the ability to store, share and maintain auditable logs and records of each step in the simulation process, showing how to validate results generated by computing workers. We also show how the system monitors worker outputs to rank and identify faulty workers via comparison to nearest neighbors or historical reward spaces as a means of ensuring model quality.
In the fifth-generation (5G) networks and the beyond, communication latency and network bandwidth will be no more bottleneck to mobile users. Thus, almost every mobile device can participate in the distributed learning. That is, the availability issue of distributed learning can be eliminated. However, the model safety will become a challenge. This is because the distributed learning system is prone to suffering from byzantine attacks during the stages of updating model parameters and aggregating gradients amongst multiple learning participants. Therefore, to provide the byzantine-resilience for distributed learning in 5G era, this article proposes a secure computing framework based on the sharding-technique of blockchain, namely PIRATE. A case-study shows how the proposed PIRATE contributes to the distributed learning. Finally, we also envision some open issues and challenges based on the proposed byzantine-resilient learning framework.
Existing distributed machine learning (DML) systems focus on improving the computational efficiency of distributed learning, whereas communication aspects have received less attention. Many DML systems treat the network as a blackbox. Thus, DML algorithms performance is impeded by network bottlenecks, and DML systems end up sacrificing important algorithmic and system-level benefits. We present MLfabric, a communication library that manages all network transfers in a DML system, and holistically determines the communication pattern of a DML algorithm at any point in time. This allows MLfabric to carefully order transfers (i.e., gradient updates) to improve convergence, opportunistically aggregate updates in-network to improve efficiency, and proactively replicate some of them to support new notions of fault tolerance. We empirically find that MLfabric achieves up to 3X speed-up in training large deep learning models in realistic dynamic cluster settings.
In recent years, data and computing resources are typically distributed in the devices of end users, various regions or organizations. Because of laws or regulations, the distributed data and computing resources cannot be directly shared among different regions or organizations for machine learning tasks. Federated learning emerges as an efficient approach to exploit distributed data and computing resources, so as to collaboratively train machine learning models, while obeying the laws and regulations and ensuring data security and data privacy. In this paper, we provide a comprehensive survey of existing works for federated learning. We propose a functional architecture of federated learning systems and a taxonomy of related techniques. Furthermore, we present the distributed training, data communication, and security of FL systems. Finally, we analyze their limitations and propose future research directions.
The robustness of distributed optimization is an emerging field of study, motivated by various applications of distributed optimization including distributed machine learning, distributed sensing, and swarm robotics. With the rapid expansion of the scale of distributed systems, resilient distributed algorithms for optimization are needed, in order to mitigate system failures, communication issues, or even malicious attacks. This survey investigates the current state of fault-tolerance research in distributed optimization, and aims to provide an overview of the existing studies on both fault-tolerant distributed optimization theories and applicable algorithms.
This paper explores serverless cloud computing for double machine learning. Being based on repeated cross-fitting, double machine learning is particularly well suited to exploit the high level of parallelism achievable with serverless computing. It allows to get fast on-demand estimations without additional cloud maintenance effort. We provide a prototype Python implementation texttt{DoubleML-Serverless} for the estimation of double machine learning models with the serverless computing platform AWS Lambda and demonstrate its utility with a case study analyzing estimation times and costs.