Do you want to publish a course? Click here

A Hydrogen-Poor Superluminous Supernova with Enhanced Iron-Group Absorption: A New Link Between SLSNe and Broad-Lined Type Ic SNe

110   0   0.0 ( 0 )
 Added by Peter Blanchard
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical observations of the Type I superluminous supernova (SLSN-I) SN2017dwh at $z!approx!0.13$, which reached $M_{i}!approx!-21$ mag at peak. Spectra taken a few days after peak show an unusual and strong absorption line centered near 3200AA that we identify with Co II, suggesting a high fraction of synthesized $^{56}$Ni in the ejecta. By $sim!1$ month after peak, SN2017dwh became much redder than other SLSNe-I, instead strongly resembling broad-lined Type Ic supernovae (Ic-BL SNe) with clear suppression of the flux redward of $sim!5000$ AA, providing further evidence for a large mass of Fe-group elements. Late-time upper limits indicate a $^{56}$Ni mass of $lesssim 0.6$ M$_odot$, leaving open the possibility that SN2017dwh produced a $^{56}$Ni mass comparable to SN1998bw ($approx!0.4$ M$_odot$). Fitting the light curve with a combined magnetar and $^{56}$Ni model using ${tt MOSFiT}$, we find that the light curve can easily accommodate such masses without affecting the inferred magnetar parameters. We also find that SN2017dwh occurred in the least-luminous detected host galaxy to date for a SLSN-I, with $M_{B} = -13.5$ mag and an implied metallicity of $Z!sim!0.08$ $Z_odot$. The spectral properties of SN2017dwh provide new evidence linking SLSNe-I with Type Ic-BL SNe, and in particular the high Fe-group abundance may be due to enhanced $^{56}$Ni production or mixing due to asphericity. Finally, we find that SN2017dwh represents the most extreme end of a correlation between continuum shape and Co II absorption strength in the near-peak spectra of SLSNe-I, indicating that Fe-group abundance likely accounts for some of the variation in their spectral shapes.

rate research

Read More

110 - Paolo A. Mazzali (1 , 2 , 3 2009
Models for the spectra and the light curve, in the photospheric as well as in the late nebular phase, are used to infer the properties of the very radio-bright, broad-lined type IIb Supernova 2003bg. Consistent fits to the light curve and the spectral evolution are obtained with an explosion that ejected ~ 4 M_sun of material with a kinetic energy of ~ 5 10^51 erg. A thin layer of hydrogen, comprising ~ 0.05 M_sun, is inferred to be present in the ejecta at the highest velocities (v >~ 9000 km/s), while a thicker helium layer, comprising ~ 1.25 M_sun, was ejected at velocities between 6500 and 9000 km/s. At lower velocities, heavier elements are present, including ~ 0.2 M_sun of 56Ni that shape the light curve and the late-time nebular spectra. These values suggest that the progenitor star had a mass of ~ 20-25 M_sun (comparable to, but maybe somewhat smaller than that of the progenitor of the XRF/SN 2008D). The rather broad-lined early spectra are the result of the presence of a small amount of material (~ 0.03 M_sun) at velocities > 0.1 c, which carries ~ 10 % of the explosion kinetic energy. No clear signatures of a highly aspherical explosion are detected.
127 - L. J. Wang , X. F. Wang , Z. Cano 2017
It is well-known that ordinary supernovae (SNe) are powered by 56Ni cascade decay. Broad-lined type Ic SNe (SNe Ic-BL) are a subclass of SNe that are not all exclusively powered by 56Ni decay. It was suggested that some SNe Ic-BL are powered by magnetar spin-down. iPTF16asu is a peculiar broad-lined type Ic supernova discovered by the intermediate Palomar Transient Factory. With a rest-frame rise time of only 4 days, iPTF16asu challenges the existing popular models, for example, the radioactive heating (56Ni-only) and the magnetar+56Ni models. Here we show that this rapid rise could be attributed to interaction between the SN ejecta and a pre-existing circumstellar medium ejected by the progenitor during its final stages of evolution, while the late-time light curve can be better explained by energy input from a rapidly spinning magnetar. This model is a natural extension to the previous magnetar model. The mass-loss rate of the progenitor and ejecta mass are consistent with a progenitor that experienced a common envelope evolution in a binary. An alternative model for the early rapid rise of the light curve is the cooling of a shock propagating into an extended envelope of the progenitor. It is difficult at this stage to tell which model (interaction+magnetar+56Ni or cooling+magnetar+56Ni) is better for iPTF16asu. However, it is worth noting that the inferred envelope mass in the cooling+magnetar+56Ni is very high.
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
107 - Nathan E. Sanders 2011
We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova (SN) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just ~4 days after explosion. The SN had a peak luminosity, M_R ~ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v_Si ~ 19,000 km/s at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56 Ni, M_Ni = 0.9 M_solar. Modeling of the light-curve points to a total ejecta mass, M_ej ~ 4.7 M_sol, and total kinetic energy, E_K ~ 11x10^51 ergs. The ratio of M_Ni to M_ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)_PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. We constrain any gamma-ray emission with E_gamma < 6x10^{48} erg (25-150 keV) and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E > 10^48 erg. We therefore rule out the association of a relativistic outflow like those which accompanied SN 1998bw and traditional long-duration GRBs, but place less-stringent constraints on a weak afterglow like that seen from XRF 060218. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.
SN2010ah, a very broad-lined type Ic SN discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of GRB/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN2010ah are: ejected mass ~ 3 Mo; kinetic energy ~10^52 erg, M(56Ni) ~ 0.25 Mo. The mass located at v >~ 0.1c is ~0.2 Mo. Although these values, in particular the kinetic energy, are quite large for a SN Ic, they are all smaller (especially the ejecta mass) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN2010ah was the explosion of a CO core of ~ 5-6 Mo, pointing to a progenitor mass of ~24 - 28 Mo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا