COUSTIC: Combinatorial Double auction for Task Assignment in Device-to-Device Clouds


Abstract in English

With the emerging technologies of Internet of Things (IOTs), the capabilities of mobile devices have increased tremendously. However, in the big data era, to complete tasks on one device is still challenging. As an emerging technology, crowdsourcing utilizing crowds of devices to facilitate large scale sensing tasks has gaining more and more research attention. Most of existing works either assume devices are willing to cooperate utilizing centralized mechanisms or design incentive algorithms using double auctions. Which is not practical to deal with the case when there is a lack of centralized controller for the former, and not suitable to the case when the seller device is also resource constrained for the later. In this paper, we propose a truthful incentive mechanism with combinatorial double auction for crowd sensing task assignment in device-to-device (D2D) clouds, where a single mobile device with intensive sensing task can hire a group of idle neighboring devices. With this new mechanism, time critical sensing tasks can be handled in time with a distributed nature. We prove that the proposed mechanism is truthful, individual rational, budget balance and computational efficient. Our simulation results demonstrate that combinatorial double auction mechanism gets a 26.3% and 15.8% gains in comparison to existing double auction scheme and the centralized maximum matching based algorithm respectively.

Download