Tuning from failed superconductor to failed insulator with magnetic field


Abstract in English

Do charge modulations compete with electron pairing in high-temperature copper-oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultra-quantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates.

Download