Do you want to publish a course? Click here

The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates Under Conservative Assumptions

252   0   0.0 ( 0 )
 Added by Jordan Stone
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the largest $L^{prime}$ ($3.8~mu$m) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer (LBTI) Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in $L^{prime}$ compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to $sim20$ au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to $sim20$ au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii ($lesssim50$ au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that $lesssim90%$ of FGK systems can host a 7 to 10 $M_{mathrm{Jup}}$ planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.

rate research

Read More

Context. Astrometric monitoring of directly-imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly-imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the LBT is being used for the LEECH survey to search for and characterize young and adolescent exoplanets in L band, including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed by Gozdziewski & Migaszewski, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet interior to the known planets. Methods. We use observations of HR 8799 and the Theta1 Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 +/- 0.012 mas/pix and -0.430 +/- 0.076 deg, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1 of 1.1 mas and 1.3 mas, respectively. The measurements for all planets are usually in agreement within 3 sigma with the ephemeris predicted by Gozdziewski & Migaszewski. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter/more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU).
In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH nearly complements other high-contrast planet imaging efforts by observing stars in L band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescopes overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L (3.8 $mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($sim$0.1-1 Gyr) stars. LEECHs contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$mu$m in preparation for JWST.
As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar Systems Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we were able to fit GJ 504 bs unusual spectral energy distribution for the first time. We find that GJ 504 b is well-fit by models with the following parameters: T_eff=544+/-10 K, g<600 m/s^2, [M/H]=0.60+/-0.12, cloud opacity parameter of f_sed=2-5, R=0.96+/-0.07 R_Jup, and log(L)=-6.13+/-0.03 L_Sun, implying a hot start mass of 3-30 M_jup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a super-stellar metallicity. Since planet formation can create objects with non-stellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.
We infer the number of planets-per-star as a function of orbital period and planet size using $Kepler$ archival data products with updated stellar properties from the $Gaia$ Data Release 2. Using hierarchical Bayesian modeling and Hamiltonian Monte Carlo, we incorporate planet radius uncertainties into an inhomogeneous Poisson point process model. We demonstrate that this model captures the general features of the outcome of the planet formation and evolution around GK stars, and provides an infrastructure to use the $Kepler$ results to constrain analytic planet distribution models. We report an increased mean and variance in the marginal posterior distributions for the number of planets per $GK$ star when including planet radius measurement uncertainties. We estimate the number of planets-per-$GK$ star between 0.75 and 2.5 $R_{oplus}$ and 50 to 300 day orbital periods to have a $68%$ credible interval of $0.49$ to $0.77$ and a posterior mean of $0.63$. This posterior has a smaller mean and a larger variance than the occurrence rate calculated in this work and in Burke et al. (2015) for the same parameter space using the $Q1-Q16$ (previous $Kepler$ planet candidate and stellar catalog). We attribute the smaller mean to many of the instrumental false positives at longer orbital periods being removed from the $DR25$ catalog. We find that the accuracy and precision of our hierarchical Bayesian model posterior distributions are less sensitive to the total number of planets in the sample, and more so on the characteristics of the catalog completeness and reliability and the span of the planet parameter space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا