Do you want to publish a course? Click here

Investigating Object Compositionality in Generative Adversarial Networks

193   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep generative models seek to recover the process with which the observed data was generated. They may be used to synthesize new samples or to subsequently extract representations. Successful approaches in the domain of images are driven by several core inductive biases. However, a bias to account for the compositional way in which humans structure a visual scene in terms of objects has frequently been overlooked. In this work, we investigate object compositionality as an inductive bias for Generative Adversarial Networks (GANs). We present a minimal modification of a standard generator to incorporate this inductive bias and find that it reliably learns to generate images as compositions of objects. Using this general design as a backbone, we then propose two useful extensions to incorporate dependencies among objects and background. We extensively evaluate our approach on several multi-object image datasets and highlight the merits of incorporating structure for representation learning purposes. In particular, we find that our structured GANs are better at generating multi-object images that are more faithful to the reference distribution. More so, we demonstrate how, by leveraging the structure of the learned generative process, one can `invert the learned generative model to perform unsupervised instance segmentation. On the challenging CLEVR dataset, it is shown how our approach is able to improve over other recent purely unsupervised object-centric approaches to image generation.

rate research

Read More

This paper introduces a novel approach for unsupervised object co-localization using Generative Adversarial Networks (GANs). GAN is a powerful tool that can implicitly learn unknown data distributions in an unsupervised manner. From the observation that GAN discriminator is highly influenced by pixels where objects appear, we analyze the internal layers of discriminator and visualize the activated pixels. Our important finding is that high image diversity of GAN, which is a main goal in GAN research, is ironically disadvantageous for object localization, because such discriminators focus not only on the target object, but also on the various objects, such as background objects. Based on extensive evaluations and experimental studies, we show the image diversity and localization performance have a negative correlation. In addition, our approach achieves meaningful accuracy for unsupervised object co-localization using publicly available benchmark datasets, even comparable to state-of-the-art weakly-supervised approach.
The deep generative adversarial networks (GAN) recently have been shown to be promising for different computer vision applications, like image edit- ing, synthesizing high resolution images, generating videos, etc. These networks and the corresponding learning scheme can handle various visual space map- pings. We approach GANs with a novel training method and learning objective, to discover multiple object instances for three cases: 1) synthesizing a picture of a specific object within a cluttered scene; 2) localizing different categories in images for weakly supervised object detection; and 3) improving object discov- ery in object detection pipelines. A crucial advantage of our method is that it learns a new deep similarity metric, to distinguish multiple objects in one im- age. We demonstrate that the network can act as an encoder-decoder generating parts of an image which contain an object, or as a modified deep CNN to rep- resent images for object detection in supervised and weakly supervised scheme. Our ranking GAN offers a novel way to search through images for object specific patterns. We have conducted experiments for different scenarios and demonstrate the method performance for object synthesizing and weakly supervised object detection and classification using the MS-COCO and PASCAL VOC datasets.
78 - Ben Adlam , Charles Weill , 2019
We investigate under and overfitting in Generative Adversarial Networks (GANs), using discriminators unseen by the generator to measure generalization. We find that the model capacity of the discriminator has a significant effect on the generators model quality, and that the generators poor performance coincides with the discriminator underfitting. Contrary to our expectations, we find that generators with large model capacities relative to the discriminator do not show evidence of overfitting on CIFAR10, CIFAR100, and CelebA.
Disentanglement is defined as the problem of learninga representation that can separate the distinct, informativefactors of variations of data. Learning such a representa-tion may be critical for developing explainable and human-controllable Deep Generative Models (DGMs) in artificialintelligence. However, disentanglement in GANs is not a triv-ial task, as the absence of sample likelihood and posteriorinference for latent variables seems to prohibit the forwardstep. Inspired by contrastive learning (CL), this paper, froma new perspective, proposes contrastive disentanglement ingenerative adversarial networks (CD-GAN). It aims at dis-entangling the factors of inter-class variation of visual datathrough contrasting image features, since the same factorvalues produce images in the same class. More importantly,we probe a novel way to make use of limited amount ofsupervision to the largest extent, to promote inter-class dis-entanglement performance. Extensive experimental resultson many well-known datasets demonstrate the efficacy ofCD-GAN for disentangling inter-class variation.
Generative Adversarial Networks (GANs) are able to generate high-quality images, but it remains difficult to explicitly specify the semantics of synthesized images. In this work, we aim to better understand the semantic representation of GANs, and thereby enable semantic control in GANs generation process. Interestingly, we find that a well-trained GAN encodes image semantics in its internal feature maps in a surprisingly simple way: a linear transformation of feature maps suffices to extract the generated image semantics. To verify this simplicity, we conduct extensive experiments on various GANs and datasets; and thanks to this simplicity, we are able to learn a semantic segmentation model for a trained GAN from a small number (e.g., 8) of labeled images. Last but not least, leveraging our findings, we propose two few-shot image editing approaches, namely Semantic-Conditional Sampling and Semantic Image Editing. Given a trained GAN and as few as eight semantic annotations, the user is able to generate diverse images subject to a user-provided semantic layout, and control the synthesized image semantics. We have made the code publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا