No Arabic abstract
Sample correlation matrices are employed ubiquitously in statistics. However, quite surprisingly, little is known about their asymptotic spectral properties for high-dimensional data, particularly beyond the case of null models for which the data is assumed independent. Here, considering the popular class of spiked models, we apply random matrix theory to derive asymptotic first-order and distributional results for both the leading eigenvalues and eigenvectors of sample correlation matrices. These results are obtained under high-dimensional settings for which the number of samples n and variables p approach infinity, with p/n tending to a constant. To first order, the spectral properties of sample correlation matrices are seen to coincide with those of sample covariance matrices; however their asymptotic distributions can differ significantly, with fluctuations of both the sample eigenvalues and eigenvectors often being remarkably smaller than those of their sample covariance counterparts.
We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded but otherwise arbitrary. The limiting normal distribution for the spiked sample eigenvalues is established. It has distinct features that the asymptotic mean relies on not only the population spikes but also the nonspikes and that the asymptotic variance in general depends on the population eigenvectors. In addition, the limiting Tracy-Widom law for the largest nonspiked sample eigenvalue is obtained. Estimation of the number of spikes and the convergence of the leading eigenvectors are also considered. The results hold even when the number of the spikes diverges. As a key technical tool, we develop a Central Limit Theorem for a type of random quadratic forms where the random vectors and random matrices involved are dependent. This result can be of independent interest.
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and $n$, respectively. When the difference $Delta$ between $Sigma_1$ and $Sigma_2$ is of small rank compared to $p,T$ and $n$, the Fisher matrix $F=S_2^{-1}S_1$ is called a {em spiked Fisher matrix}. When $p,T$ and $n$ grow to infinity proportionally, we establish a phase transition for the extreme eigenvalues of $F$: when the eigenvalues of $Delta$ ({em spikes}) are above (or under) a critical value, the associated extreme eigenvalues of the Fisher matrix will converge to some point outside the support of the global limit (LSD) of other eigenvalues; otherwise, they will converge to the edge points of the LSD. Furthermore, we derive central limit theorems for these extreme eigenvalues of the spiked Fisher matrix. The limiting distributions are found to be Gaussian if and only if the corresponding population spike eigenvalues in $Delta$ are {em simple}. Numerical examples are provided to demonstrate the finite sample performance of the results. In addition to classical applications of a Fisher matrix in high-dimensional data analysis, we propose a new method for the detection of signals allowing an arbitrary covariance structure of the noise. Simulation experiments are conducted to illustrate the performance of this detector.
We consider general high-dimensional spiked sample covariance models and show that their leading sample spiked eigenvalues and their linear spectral statistics are asymptotically independent when the sample size and dimension are proportional to each other. As a byproduct, we also establish the central limit theorem of the leading sample spiked eigenvalues by removing the block diagonal assumption on the population covariance matrix, which is commonly needed in the literature. Moreover, we propose consistent estimators of the $L_4$ norm of the spiked population eigenvectors. Based on these results, we develop a new statistic to test the equality of two spiked population covariance matrices. Numerical studies show that the new test procedure is more powerful than some existing methods.
Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample correlation matrices for the case where the dimension p and the sample size $n$ are comparable. This result is of independent interest in large dimensional random matrix theory. Meanwhile, we apply the linear spectral statistic to an independence test for $p$ random variables, and then an equivalence test for p factor loadings and $n$ factors in a factor model. The finite sample performance of the proposed test shows its applicability and effectiveness in practice. An empirical application to test the independence of household incomes from different cities in China is also conducted.
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive the joint distribution of the extreme eigenvalues and the generalized components of the associated eigenvectors, i.e., the projections of the eigenvectors onto arbitrary given direction, assuming that the dimension and sample size are comparably large. In general, the joint distribution is given in terms of linear combinations of finitely many Gaussian and Chi-square variables, with parameters depending on the projection direction and the spikes. Our assumption on the spikes is fully general. First, the strengths of spikes are only required to be slightly above the critical threshold and no upper bound on the strengths is needed. Second, multiple spikes, i.e., spikes with the same strength, are allowed. Third, no structural assumption is imposed on the spikes. Thanks to the general setting, we can then apply the results to various high dimensional statistical hypothesis testing problems involving both the eigenvalues and eigenvectors. Specifically, we propose accurate and powerful statistics to conduct hypothesis testing on the principal components. These statistics are data-dependent and adaptive to the underlying true spikes. Numerical simulations also confirm the accuracy and powerfulness of our proposed statistics and illustrate significantly better performance compared to the existing methods in the literature. Especially, our methods are accurate and powerful even when either the spikes are small or the dimension is large.