Ultra-low Hysteresis in Giant Magnetocaloric Mn1-xVxFe(P,Si,B) Compounds


Abstract in English

Large thermal hysteresis in the MnFe(P, Si, B) system hinders the heat exchange rate and thus limits the magnetocaloric applications at high frequencies. Substitution of Mn by V in Mn1-xVxFe0.95P0.593Si0.33B0.077 and Mn1-xVxFe0.95P0.563Si0.36B0.077 alloys was found to reduce the thermal hysteresis due to a decrease in the latent heat. Introducing V increases both the field-induced transition temperature shift and the magnetic moment per formula unit. Thus, a decease in the thermal hysteresis is obtained without losing the giant magnetocaloric effect. In consequence, an ultralow hysteresis (0.7 K) and a giant adiabatic temperature change of 2.3 K were achieved, which makes these alloys promising candidates for commercial magnetic refrigerator using permanent magnets.

Download