No Arabic abstract
We report experimental measurement of critical disorder in weakly disordered, one-dimensional photonic crystals. We measure the configurationally-averaged transmission at various degrees of weak disorder. We extract the density of states (DoS) after fitting the transmission with theoretical profiles, and identify the Lifshitz tail realized by weak disorder. We observe the vanishing of Van Hove singularities and the flattening of the DoS with increasing disorder in our system. Systematic variation of disorder strength allows us to study the behavior of Lifshitz exponent with the degree of disorder. This provides a direct handle to the critical disorder in the one-dimensional crystal, at which the transport behavior of the system is known to change. The contradictory behavior at very weak disorder in the DoS variation at the bandedge and the midgap are seen to resolve into synchronous behavior beyond the critical disorder. The experimentally measured transmission is shown to carry a clear signature of the critical disorder, which is in very good agreement with the theoretically expected disorder.
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predictions of quantum field theory. Here, we investigate DCE in a dynamic one-dimensional photonic crystal system with both temporal and spatial modulation of the refractive index profile. Such a system can resonantly generate photons at driving frequencies equal to even or odd integer times of that of the fundamental cavity mode governed by the symmetry of the spatial modulation. We further observe interesting spectral and scaling behaviors for photons excited at the band edge. Our discovery introduces a new degree of freedom to enhance the efficiency of DCE.
Retrieving the vast amount of information carried by a photon is an enduring challenge in quantum metrology science and quantum photonics research. The transverse spatial state of a photon is a convenient high-dimensional quantum system for study, as it has a well-understood classical analogue as the transverse complex field profile of an optical beam. One severe drawback of all currently available quantum metrology techniques is the need for a time-consuming characterization process, which scales very unfavorably with the dimensionality of the quantum system. Here we demonstrate a technique that directly measures a million-dimensional photonic spatial state in a single setting. Through the arrangement of a weak measurement of momentum and parallel strong measurements of position, the complex values of the entire photon state vector become measurable directly. The dimension of our measured state is approximately four orders of magnitude larger than previously measured. Our work opens up a practical route for characterizing high-dimensional quantum systems in real time. Furthermore, our demonstration also serve as a high-speed, extremely-high-resolution unambiguous complex field measurement technique for diverse classical applications.
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points without structure designs. The topological transition from two Dirac points to four Weyl points can be clearly observed by tuning the twist angle between layers. Besides, on the interface between the photonic type-II Weyl material and air, gappless surface states have also been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points at the same frequency would transform into the non-ideal ones, and exhibit topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic Weyl points or other semimetal phases by utilizing naturally anisotropic materials.