No Arabic abstract
We have systematically investigated the excitation spectra of $p$-shell hypernuclei within the shell model based on the nucleon-nucleon and hyperon-nucleon interactions. For the effective nucleon-nucleon interaction, we adopt the Gogny force instead of the widely-used empirical $p$-shell Cohen-Kurath interaction, while the hyperon-nucleon interaction takes the $Lambda N$ interaction including the $Lambda N$-$Sigma N$ coupling effect. We find that the shell model with the Gogny force can give reasonable descriptions of both spectra and binding energies of the $p$-shell nuclei. With this confidence, combined with the $Lambda N$ interaction, we have performed shell-model calculations for the $p$-shell hypernuclei. We compare our results with $gamma$-ray data as well as various theoretical calculations, and explain recent experimental hypernuclear excitation spectra observed at JLab.
Background: The half-life of the famous $^{14}$C $beta$ decay is anomalously long, with different mechanisms: the tensor force, cross-shell mixing, and three-body forces, proposed to explain the cancellations that lead to a small transition matrix element. Purpose: We revisit and analyze the role of the tensor force for the $beta$ decay of $^{14}$C as well as of neighboring isotopes. Methods: We add a tensor force to the Gogny interaction, and derive an effective Hamiltonian for shell-model calculations. The calculations were carried out in a $p$-$sd$ model space to investigate cross-shell effects. Furthermore, we decompose the wave functions according to the total orbital angular momentum $L$ in order to analyze the effects of the tensor force and cross-shell mixing. Results: The inclusion of the tensor force significantly improves the shell-model calculations of the $beta$-decay properties of carbon isotopes. In particular, the anomalously slow $beta$ decay of $^{14}$C can be explained by the isospin $T=0$ part of the tensor force, which changes the components of $^{14}$N with the orbital angular momentum $L=0,1$, and results in a dramatic suppression of the Gamow-Teller transition strength. At the same time, the description of other nearby $beta$ decays are improved. Conclusions: Decomposition of wave function into $L$ components illuminates how the tensor force modifies nuclear wave functions, in particular suppression of $beta$-decay matrix elements. Cross-shell mixing also has a visible impact on the $beta$-decay strength. Inclusion of the tensor force does not seem to significantly change, however, binding energies of the nuclei within the phenomenological interaction.
The density-dependent finite-range Gogny force has been used to derive the effective Hamiltonian for the shell-model calculations of nuclei. The density dependence simulates an equivalent three-body force, while the finite range gives a Gaussian distribution of the interaction in the momentum space and hence leads to an automatic smooth decoupling between low-momentum and high-momentum components of the interaction, which is important for finite-space shell-model calculations. Two-body interaction matrix elements, single-particle energies and the core energy of the shell model can be determined by the unified Gogny force. The analytical form of the Gogny force is advantageous to treat cross-shell cases, while it is difficult to determine the cross-shell matrix elements and single-particle energies using an empirical Hamiltonian by fitting experimental data with a large number of matrix elements. In this paper, we have applied the Gogny-force effective shell-model Hamiltonian to the ${it p}$- and ${it sd}$-shell nuclei. The results show good agreements with experimental data and other calculations using empirical Hamiltonians. The experimentally-known neutron drip line of oxygen isotopes and the ground states of typical nuclei $^{10}$B and $^{18}$N can be reproduced, in which the role of three-body force is non-negligible. The Gogny-force derived effective Hamiltonian has also been applied to the cross-shell calculations of the ${it sd}$-${it pf}$ shell.
The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interactions approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow Shell Model (GSM) provides such a framework as it is capable of describing resonant and non-resonant many-body states on equal footing. To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the $psdf$ shell model space. The resulting interaction is expected to describe nuclei with $5 leqslant A leqslant 12$ at the $p-sd$-shell interface. The optimized one-body potential reproduces nucleon-$^4$He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the Helium, Lithium, and Beryllium isotopes up to $A=9$. A very good agreement with experiment was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the $psd$ region of the nuclear chart.
We extend the recently developed Jacobi no-core shell model to hypernuclei. Based on the coefficients of fractional parentage for ordinary nuclei, we define a basis where the hyperon is the spectator particle. We then formulate transition coefficients to states that single out a hyperon-nucleon pair which allow us to implement a hypernuclear many-baryon Hamiltonian for $p$-shell hypernuclei. As a first application, we use the basis states and the transition coefficients to calculate the ground states of $^{4}_{Lambda}$He, $^{4}_{Lambda}$H, $^{5}_{Lambda}$He, $^{6}_{Lambda}$He, $^{6}_{Lambda}$Li, and $^{7}_{Lambda}$Li and, additionally, the first excited states of $^{4}_{Lambda}$He, $^{4}_{Lambda}$H, and $^{7}_{Lambda}$Li. In order to obtain converged results, we employ the similarity renormalization group (SRG) to soften the nucleon-nucleon and hyperon-nucleon interactions. Although the dependence on this evolution of the Hamiltonian is significant, we show that a strong correlation of the results can be used to identify preferred SRG parameters. This allows for meaningful predictions of hypernuclear binding and excitation energies. The transition coefficients will be made publicly available as HDF5 data files.
Neutrinoless double beta decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limitations of the Standard Model. The rate of this process depends on both the unknown neutrino effective mass and the nuclear matrix element associated with the given neutrinoless double-beta decay transition. The latter can only be provided by theoretical calculations, hence the need of accurate theoretical predictions of the nuclear matrix element for the success of the experimental programs. This need drives the theoretical nuclear physics community to provide the most reliable calculations of the nuclear matrix elements. Among the various computational models adopted to solve the many-body nuclear problem, the shell model is widely considered as the basic framework of the microscopic description of the nucleus. Here, we review the most recent and advanced shell-model calculations of the nuclear matrix elements considering the light-neutrino-exchange channel for nuclei of experimental interest. We report the sensitivity of the theoretical calculations with respect to variations in the model spaces and the shell-model nuclear Hamiltonians.