The Jackiw-Teitelboim (JT) model arises from the dimensional reduction of charged black holes. Motivated by the holographic complexity conjecture, we calculate the late-time rate of change of action of a Wheeler-DeWitt patch in the JT theory. Surprisingly, the rate vanishes. This is puzzling because it contradicts both holographic expectations for the rate of complexification and also action calculations for charged black holes. We trace the discrepancy to an improper treatment of boundary terms when naively doing the dimensional reduction. Once the boundary term is corrected, we find exact agreement with expectations. We comment on the general lessons that this might hold for holographic complexity and beyond.