Convolutional group-sparse coding and source localization


Abstract in English

In this paper, we present a new interpretation of non-negatively constrained convolutional coding problems as blind deconvolution problems with spatially variant point spread function. In this light, we propose an optimization framework that generalizes our previous work on non-negative group sparsity for convolutional models. We then link these concepts to source localization problems that arise in scientific imaging and provide a visual example on an image derived from data captured by the Hubble telescope.

Download